Metamath Proof Explorer


Theorem ddemeas

Description: The Dirac delta measure is a measure. (Contributed by Thierry Arnoux, 14-Sep-2018)

Ref Expression
Assertion ddemeas δmeasures𝒫

Proof

Step Hyp Ref Expression
1 1xr 1*
2 0le1 01
3 pnfge 1*1+∞
4 1 3 ax-mp 1+∞
5 0xr 0*
6 pnfxr +∞*
7 elicc1 0*+∞*10+∞1*011+∞
8 5 6 7 mp2an 10+∞1*011+∞
9 1 2 4 8 mpbir3an 10+∞
10 0e0iccpnf 00+∞
11 9 10 ifcli if0a100+∞
12 11 rgenw a𝒫if0a100+∞
13 df-dde δ=a𝒫if0a10
14 13 fmpt a𝒫if0a100+∞δ:𝒫0+∞
15 12 14 mpbi δ:𝒫0+∞
16 0ss
17 noel ¬0
18 ddeval0 ¬0δ=0
19 16 17 18 mp2an δ=0
20 rabxm x=ax|0aax|¬0a
21 esumeq1 x=ax|0aax|¬0a*yxδy=*yax|0aax|¬0aδy
22 20 21 ax-mp *yxδy=*yax|0aax|¬0aδy
23 nfv yx𝒫𝒫
24 nfcv _yax|0a
25 nfcv _yax|¬0a
26 rabexg x𝒫𝒫ax|0aV
27 rabexg x𝒫𝒫ax|¬0aV
28 rabnc ax|0aax|¬0a=
29 28 a1i x𝒫𝒫ax|0aax|¬0a=
30 elrabi yax|0ayx
31 30 adantl x𝒫𝒫yax|0ayx
32 simpl x𝒫𝒫yax|0ax𝒫𝒫
33 elelpwi yxx𝒫𝒫y𝒫
34 31 32 33 syl2anc x𝒫𝒫yax|0ay𝒫
35 15 ffvelcdmi y𝒫δy0+∞
36 34 35 syl x𝒫𝒫yax|0aδy0+∞
37 elrabi yax|¬0ayx
38 37 adantl x𝒫𝒫yax|¬0ayx
39 simpl x𝒫𝒫yax|¬0ax𝒫𝒫
40 38 39 33 syl2anc x𝒫𝒫yax|¬0ay𝒫
41 40 35 syl x𝒫𝒫yax|¬0aδy0+∞
42 23 24 25 26 27 29 36 41 esumsplit x𝒫𝒫*yax|0aax|¬0aδy=*yax|0aδy+𝑒*yax|¬0aδy
43 22 42 eqtrid x𝒫𝒫*yxδy=*yax|0aδy+𝑒*yax|¬0aδy
44 43 adantr x𝒫𝒫Disjyxy*yxδy=*yax|0aδy+𝑒*yax|¬0aδy
45 esumeq1 ax|0a=k*yax|0aδy=*ykδy
46 45 adantl x𝒫𝒫Disjyxyyx0ykxax|0a=k*yax|0aδy=*ykδy
47 simp-4l x𝒫𝒫Disjyxyyx0ykxax|0a=kx𝒫𝒫
48 vex kV
49 48 rabsnel ax|0a=kkx
50 49 adantl x𝒫𝒫Disjyxyyx0ykxax|0a=kkx
51 eleq2w a=k0a0k
52 48 51 rabsnt ax|0a=k0k
53 52 adantl x𝒫𝒫Disjyxyyx0ykxax|0a=k0k
54 elelpwi kxx𝒫𝒫k𝒫
55 54 ancoms x𝒫𝒫kxk𝒫
56 55 adantrr x𝒫𝒫kx0kk𝒫
57 simpr k𝒫y=ky=k
58 57 fveq2d k𝒫y=kδy=δk
59 48 a1i k𝒫kV
60 15 ffvelcdmi k𝒫δk0+∞
61 58 59 60 esumsn k𝒫*ykδy=δk
62 56 61 syl x𝒫𝒫kx0k*ykδy=δk
63 56 elpwid x𝒫𝒫kx0kk
64 simprr x𝒫𝒫kx0k0k
65 ddeval1 k0kδk=1
66 63 64 65 syl2anc x𝒫𝒫kx0kδk=1
67 62 66 eqtrd x𝒫𝒫kx0k*ykδy=1
68 47 50 53 67 syl12anc x𝒫𝒫Disjyxyyx0ykxax|0a=k*ykδy=1
69 46 68 eqtrd x𝒫𝒫Disjyxyyx0ykxax|0a=k*yax|0aδy=1
70 df-disj Disjyxyk*yxky
71 c0ex 0V
72 eleq1 k=0ky0y
73 72 rmobidv k=0*yxky*yx0y
74 71 73 spcv k*yxky*yx0y
75 70 74 sylbi Disjyxy*yx0y
76 rmo5 *yx0yyx0y∃!yx0y
77 76 biimpi *yx0yyx0y∃!yx0y
78 77 imp *yx0yyx0y∃!yx0y
79 75 78 sylan Disjyxyyx0y∃!yx0y
80 reusn ∃!yx0ykyx|0y=k
81 79 80 sylib Disjyxyyx0ykyx|0y=k
82 eleq2w a=y0a0y
83 82 cbvrabv ax|0a=yx|0y
84 83 eqeq1i ax|0a=kyx|0y=k
85 49 ancri ax|0a=kkxax|0a=k
86 84 85 sylbir yx|0y=kkxax|0a=k
87 86 eximi kyx|0y=kkkxax|0a=k
88 df-rex kxax|0a=kkkxax|0a=k
89 87 88 sylibr kyx|0y=kkxax|0a=k
90 81 89 syl Disjyxyyx0ykxax|0a=k
91 90 adantll x𝒫𝒫Disjyxyyx0ykxax|0a=k
92 69 91 r19.29a x𝒫𝒫Disjyxyyx0y*yax|0aδy=1
93 elpwi x𝒫𝒫x𝒫
94 sspwuni x𝒫x
95 93 94 sylib x𝒫𝒫x
96 eluni2 0xyx0y
97 96 biimpri yx0y0x
98 ddeval1 x0xδx=1
99 95 97 98 syl2an x𝒫𝒫yx0yδx=1
100 99 adantlr x𝒫𝒫Disjyxyyx0yδx=1
101 92 100 eqtr4d x𝒫𝒫Disjyxyyx0y*yax|0aδy=δx
102 nfre1 yyx0y
103 102 nfn y¬yx0y
104 82 elrab yax|0ayx0y
105 104 exbii yyax|0ayyx0y
106 neq0 ¬ax|0a=yyax|0a
107 df-rex yx0yyyx0y
108 105 106 107 3bitr4i ¬ax|0a=yx0y
109 108 biimpi ¬ax|0a=yx0y
110 109 con1i ¬yx0yax|0a=
111 103 110 esumeq1d ¬yx0y*yax|0aδy=*yδy
112 esumnul *yδy=0
113 111 112 eqtrdi ¬yx0y*yax|0aδy=0
114 113 adantl x𝒫𝒫Disjyxy¬yx0y*yax|0aδy=0
115 96 biimpi 0xyx0y
116 115 con3i ¬yx0y¬0x
117 ddeval0 x¬0xδx=0
118 95 116 117 syl2an x𝒫𝒫¬yx0yδx=0
119 118 adantlr x𝒫𝒫Disjyxy¬yx0yδx=0
120 114 119 eqtr4d x𝒫𝒫Disjyxy¬yx0y*yax|0aδy=δx
121 101 120 pm2.61dan x𝒫𝒫Disjyxy*yax|0aδy=δx
122 40 elpwid x𝒫𝒫yax|¬0ay
123 82 notbid a=y¬0a¬0y
124 123 elrab yax|¬0ayx¬0y
125 124 simprbi yax|¬0a¬0y
126 125 adantl x𝒫𝒫yax|¬0a¬0y
127 ddeval0 y¬0yδy=0
128 122 126 127 syl2anc x𝒫𝒫yax|¬0aδy=0
129 128 esumeq2dv x𝒫𝒫*yax|¬0aδy=*yax|¬0a0
130 vex xV
131 130 rabex ax|¬0aV
132 25 esum0 ax|¬0aV*yax|¬0a0=0
133 131 132 ax-mp *yax|¬0a0=0
134 129 133 eqtrdi x𝒫𝒫*yax|¬0aδy=0
135 134 adantr x𝒫𝒫Disjyxy*yax|¬0aδy=0
136 121 135 oveq12d x𝒫𝒫Disjyxy*yax|0aδy+𝑒*yax|¬0aδy=δx+𝑒0
137 vuniex xV
138 137 elpw x𝒫x
139 138 biimpri xx𝒫
140 iccssxr 0+∞*
141 15 ffvelcdmi x𝒫δx0+∞
142 140 141 sselid x𝒫δx*
143 xaddrid δx*δx+𝑒0=δx
144 95 139 142 143 4syl x𝒫𝒫δx+𝑒0=δx
145 144 adantr x𝒫𝒫Disjyxyδx+𝑒0=δx
146 44 136 145 3eqtrrd x𝒫𝒫Disjyxyδx=*yxδy
147 146 adantrl x𝒫𝒫xωDisjyxyδx=*yxδy
148 147 ex x𝒫𝒫xωDisjyxyδx=*yxδy
149 148 rgen x𝒫𝒫xωDisjyxyδx=*yxδy
150 reex V
151 pwsiga V𝒫sigAlgebra
152 150 151 ax-mp 𝒫sigAlgebra
153 elrnsiga 𝒫sigAlgebra𝒫ransigAlgebra
154 ismeas 𝒫ransigAlgebraδmeasures𝒫δ:𝒫0+∞δ=0x𝒫𝒫xωDisjyxyδx=*yxδy
155 152 153 154 mp2b δmeasures𝒫δ:𝒫0+∞δ=0x𝒫𝒫xωDisjyxyδx=*yxδy
156 15 19 149 155 mpbir3an δmeasures𝒫