| Step | Hyp | Ref | Expression | 
						
							| 1 |  | poimir.0 |  |-  ( ph -> N e. NN ) | 
						
							| 2 |  | poimirlem22.s |  |-  S = { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } | 
						
							| 3 |  | poimirlem9.1 |  |-  ( ph -> T e. S ) | 
						
							| 4 |  | poimirlem9.2 |  |-  ( ph -> ( 2nd ` T ) e. ( 1 ... ( N - 1 ) ) ) | 
						
							| 5 |  | poimirlem9.3 |  |-  ( ph -> U e. S ) | 
						
							| 6 |  | poimirlem9.4 |  |-  ( ph -> ( 2nd ` ( 1st ` U ) ) =/= ( 2nd ` ( 1st ` T ) ) ) | 
						
							| 7 |  | resundi |  |-  ( ( 2nd ` ( 1st ` U ) ) |` ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) = ( ( ( 2nd ` ( 1st ` U ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) u. ( ( 2nd ` ( 1st ` U ) ) |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) | 
						
							| 8 | 1 | nncnd |  |-  ( ph -> N e. CC ) | 
						
							| 9 |  | npcan1 |  |-  ( N e. CC -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 10 | 8 9 | syl |  |-  ( ph -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 11 | 1 | nnzd |  |-  ( ph -> N e. ZZ ) | 
						
							| 12 |  | peano2zm |  |-  ( N e. ZZ -> ( N - 1 ) e. ZZ ) | 
						
							| 13 |  | uzid |  |-  ( ( N - 1 ) e. ZZ -> ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) | 
						
							| 14 |  | peano2uz |  |-  ( ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) | 
						
							| 15 | 11 12 13 14 | 4syl |  |-  ( ph -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) | 
						
							| 16 | 10 15 | eqeltrrd |  |-  ( ph -> N e. ( ZZ>= ` ( N - 1 ) ) ) | 
						
							| 17 |  | fzss2 |  |-  ( N e. ( ZZ>= ` ( N - 1 ) ) -> ( 1 ... ( N - 1 ) ) C_ ( 1 ... N ) ) | 
						
							| 18 | 16 17 | syl |  |-  ( ph -> ( 1 ... ( N - 1 ) ) C_ ( 1 ... N ) ) | 
						
							| 19 | 18 4 | sseldd |  |-  ( ph -> ( 2nd ` T ) e. ( 1 ... N ) ) | 
						
							| 20 |  | fzp1elp1 |  |-  ( ( 2nd ` T ) e. ( 1 ... ( N - 1 ) ) -> ( ( 2nd ` T ) + 1 ) e. ( 1 ... ( ( N - 1 ) + 1 ) ) ) | 
						
							| 21 | 4 20 | syl |  |-  ( ph -> ( ( 2nd ` T ) + 1 ) e. ( 1 ... ( ( N - 1 ) + 1 ) ) ) | 
						
							| 22 | 10 | oveq2d |  |-  ( ph -> ( 1 ... ( ( N - 1 ) + 1 ) ) = ( 1 ... N ) ) | 
						
							| 23 | 21 22 | eleqtrd |  |-  ( ph -> ( ( 2nd ` T ) + 1 ) e. ( 1 ... N ) ) | 
						
							| 24 | 19 23 | prssd |  |-  ( ph -> { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } C_ ( 1 ... N ) ) | 
						
							| 25 |  | undif |  |-  ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } C_ ( 1 ... N ) <-> ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = ( 1 ... N ) ) | 
						
							| 26 | 24 25 | sylib |  |-  ( ph -> ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = ( 1 ... N ) ) | 
						
							| 27 | 26 | reseq2d |  |-  ( ph -> ( ( 2nd ` ( 1st ` U ) ) |` ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) = ( ( 2nd ` ( 1st ` U ) ) |` ( 1 ... N ) ) ) | 
						
							| 28 |  | elrabi |  |-  ( U e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } -> U e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) | 
						
							| 29 | 28 2 | eleq2s |  |-  ( U e. S -> U e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) | 
						
							| 30 |  | xp1st |  |-  ( U e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( 1st ` U ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) | 
						
							| 31 |  | xp2nd |  |-  ( ( 1st ` U ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 2nd ` ( 1st ` U ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | 
						
							| 32 | 5 29 30 31 | 4syl |  |-  ( ph -> ( 2nd ` ( 1st ` U ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | 
						
							| 33 |  | fvex |  |-  ( 2nd ` ( 1st ` U ) ) e. _V | 
						
							| 34 |  | f1oeq1 |  |-  ( f = ( 2nd ` ( 1st ` U ) ) -> ( f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( 2nd ` ( 1st ` U ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) ) | 
						
							| 35 | 33 34 | elab |  |-  ( ( 2nd ` ( 1st ` U ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } <-> ( 2nd ` ( 1st ` U ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) | 
						
							| 36 | 32 35 | sylib |  |-  ( ph -> ( 2nd ` ( 1st ` U ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) | 
						
							| 37 |  | f1ofn |  |-  ( ( 2nd ` ( 1st ` U ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> ( 2nd ` ( 1st ` U ) ) Fn ( 1 ... N ) ) | 
						
							| 38 |  | fnresdm |  |-  ( ( 2nd ` ( 1st ` U ) ) Fn ( 1 ... N ) -> ( ( 2nd ` ( 1st ` U ) ) |` ( 1 ... N ) ) = ( 2nd ` ( 1st ` U ) ) ) | 
						
							| 39 | 36 37 38 | 3syl |  |-  ( ph -> ( ( 2nd ` ( 1st ` U ) ) |` ( 1 ... N ) ) = ( 2nd ` ( 1st ` U ) ) ) | 
						
							| 40 | 27 39 | eqtrd |  |-  ( ph -> ( ( 2nd ` ( 1st ` U ) ) |` ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) = ( 2nd ` ( 1st ` U ) ) ) | 
						
							| 41 | 7 40 | eqtr3id |  |-  ( ph -> ( ( ( 2nd ` ( 1st ` U ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) u. ( ( 2nd ` ( 1st ` U ) ) |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) = ( 2nd ` ( 1st ` U ) ) ) | 
						
							| 42 |  | 2lt3 |  |-  2 < 3 | 
						
							| 43 |  | 2re |  |-  2 e. RR | 
						
							| 44 |  | 3re |  |-  3 e. RR | 
						
							| 45 | 43 44 | ltnlei |  |-  ( 2 < 3 <-> -. 3 <_ 2 ) | 
						
							| 46 | 42 45 | mpbi |  |-  -. 3 <_ 2 | 
						
							| 47 |  | df-pr |  |-  { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } = ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. } u. { <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) | 
						
							| 48 | 47 | coeq2i |  |-  ( ( 2nd ` ( 1st ` T ) ) o. { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) = ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. } u. { <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) ) | 
						
							| 49 |  | coundi |  |-  ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. } u. { <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) ) = ( ( ( 2nd ` ( 1st ` T ) ) o. { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. } ) u. ( ( 2nd ` ( 1st ` T ) ) o. { <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) ) | 
						
							| 50 | 48 49 | eqtri |  |-  ( ( 2nd ` ( 1st ` T ) ) o. { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) = ( ( ( 2nd ` ( 1st ` T ) ) o. { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. } ) u. ( ( 2nd ` ( 1st ` T ) ) o. { <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) ) | 
						
							| 51 |  | elrabi |  |-  ( T e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } -> T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) | 
						
							| 52 | 51 2 | eleq2s |  |-  ( T e. S -> T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) | 
						
							| 53 |  | xp1st |  |-  ( T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) | 
						
							| 54 |  | xp2nd |  |-  ( ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 2nd ` ( 1st ` T ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | 
						
							| 55 | 3 52 53 54 | 4syl |  |-  ( ph -> ( 2nd ` ( 1st ` T ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | 
						
							| 56 |  | fvex |  |-  ( 2nd ` ( 1st ` T ) ) e. _V | 
						
							| 57 |  | f1oeq1 |  |-  ( f = ( 2nd ` ( 1st ` T ) ) -> ( f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) ) | 
						
							| 58 | 56 57 | elab |  |-  ( ( 2nd ` ( 1st ` T ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } <-> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) | 
						
							| 59 | 55 58 | sylib |  |-  ( ph -> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) | 
						
							| 60 |  | f1of1 |  |-  ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-> ( 1 ... N ) ) | 
						
							| 61 | 59 60 | syl |  |-  ( ph -> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-> ( 1 ... N ) ) | 
						
							| 62 | 23 | snssd |  |-  ( ph -> { ( ( 2nd ` T ) + 1 ) } C_ ( 1 ... N ) ) | 
						
							| 63 |  | f1ores |  |-  ( ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-> ( 1 ... N ) /\ { ( ( 2nd ` T ) + 1 ) } C_ ( 1 ... N ) ) -> ( ( 2nd ` ( 1st ` T ) ) |` { ( ( 2nd ` T ) + 1 ) } ) : { ( ( 2nd ` T ) + 1 ) } -1-1-onto-> ( ( 2nd ` ( 1st ` T ) ) " { ( ( 2nd ` T ) + 1 ) } ) ) | 
						
							| 64 | 61 62 63 | syl2anc |  |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) |` { ( ( 2nd ` T ) + 1 ) } ) : { ( ( 2nd ` T ) + 1 ) } -1-1-onto-> ( ( 2nd ` ( 1st ` T ) ) " { ( ( 2nd ` T ) + 1 ) } ) ) | 
						
							| 65 |  | f1of |  |-  ( ( ( 2nd ` ( 1st ` T ) ) |` { ( ( 2nd ` T ) + 1 ) } ) : { ( ( 2nd ` T ) + 1 ) } -1-1-onto-> ( ( 2nd ` ( 1st ` T ) ) " { ( ( 2nd ` T ) + 1 ) } ) -> ( ( 2nd ` ( 1st ` T ) ) |` { ( ( 2nd ` T ) + 1 ) } ) : { ( ( 2nd ` T ) + 1 ) } --> ( ( 2nd ` ( 1st ` T ) ) " { ( ( 2nd ` T ) + 1 ) } ) ) | 
						
							| 66 | 64 65 | syl |  |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) |` { ( ( 2nd ` T ) + 1 ) } ) : { ( ( 2nd ` T ) + 1 ) } --> ( ( 2nd ` ( 1st ` T ) ) " { ( ( 2nd ` T ) + 1 ) } ) ) | 
						
							| 67 |  | f1ofn |  |-  ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> ( 2nd ` ( 1st ` T ) ) Fn ( 1 ... N ) ) | 
						
							| 68 | 59 67 | syl |  |-  ( ph -> ( 2nd ` ( 1st ` T ) ) Fn ( 1 ... N ) ) | 
						
							| 69 |  | fnsnfv |  |-  ( ( ( 2nd ` ( 1st ` T ) ) Fn ( 1 ... N ) /\ ( ( 2nd ` T ) + 1 ) e. ( 1 ... N ) ) -> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) } = ( ( 2nd ` ( 1st ` T ) ) " { ( ( 2nd ` T ) + 1 ) } ) ) | 
						
							| 70 | 68 23 69 | syl2anc |  |-  ( ph -> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) } = ( ( 2nd ` ( 1st ` T ) ) " { ( ( 2nd ` T ) + 1 ) } ) ) | 
						
							| 71 | 70 | feq3d |  |-  ( ph -> ( ( ( 2nd ` ( 1st ` T ) ) |` { ( ( 2nd ` T ) + 1 ) } ) : { ( ( 2nd ` T ) + 1 ) } --> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) } <-> ( ( 2nd ` ( 1st ` T ) ) |` { ( ( 2nd ` T ) + 1 ) } ) : { ( ( 2nd ` T ) + 1 ) } --> ( ( 2nd ` ( 1st ` T ) ) " { ( ( 2nd ` T ) + 1 ) } ) ) ) | 
						
							| 72 | 66 71 | mpbird |  |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) |` { ( ( 2nd ` T ) + 1 ) } ) : { ( ( 2nd ` T ) + 1 ) } --> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) } ) | 
						
							| 73 |  | eqid |  |-  { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. } = { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. } | 
						
							| 74 |  | fvex |  |-  ( 2nd ` T ) e. _V | 
						
							| 75 |  | ovex |  |-  ( ( 2nd ` T ) + 1 ) e. _V | 
						
							| 76 | 74 75 | fsn |  |-  ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. } : { ( 2nd ` T ) } --> { ( ( 2nd ` T ) + 1 ) } <-> { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. } = { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. } ) | 
						
							| 77 | 73 76 | mpbir |  |-  { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. } : { ( 2nd ` T ) } --> { ( ( 2nd ` T ) + 1 ) } | 
						
							| 78 |  | fco2 |  |-  ( ( ( ( 2nd ` ( 1st ` T ) ) |` { ( ( 2nd ` T ) + 1 ) } ) : { ( ( 2nd ` T ) + 1 ) } --> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) } /\ { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. } : { ( 2nd ` T ) } --> { ( ( 2nd ` T ) + 1 ) } ) -> ( ( 2nd ` ( 1st ` T ) ) o. { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. } ) : { ( 2nd ` T ) } --> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) } ) | 
						
							| 79 | 72 77 78 | sylancl |  |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) o. { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. } ) : { ( 2nd ` T ) } --> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) } ) | 
						
							| 80 |  | fvex |  |-  ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) e. _V | 
						
							| 81 | 80 | fconst2 |  |-  ( ( ( 2nd ` ( 1st ` T ) ) o. { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. } ) : { ( 2nd ` T ) } --> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) } <-> ( ( 2nd ` ( 1st ` T ) ) o. { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. } ) = ( { ( 2nd ` T ) } X. { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) } ) ) | 
						
							| 82 | 79 81 | sylib |  |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) o. { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. } ) = ( { ( 2nd ` T ) } X. { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) } ) ) | 
						
							| 83 | 74 80 | xpsn |  |-  ( { ( 2nd ` T ) } X. { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) } ) = { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } | 
						
							| 84 | 82 83 | eqtrdi |  |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) o. { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. } ) = { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } ) | 
						
							| 85 | 84 | uneq1d |  |-  ( ph -> ( ( ( 2nd ` ( 1st ` T ) ) o. { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. } ) u. ( ( 2nd ` ( 1st ` T ) ) o. { <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) ) = ( { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } u. ( ( 2nd ` ( 1st ` T ) ) o. { <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) ) ) | 
						
							| 86 | 50 85 | eqtrid |  |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) o. { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) = ( { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } u. ( ( 2nd ` ( 1st ` T ) ) o. { <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) ) ) | 
						
							| 87 |  | elfznn |  |-  ( ( 2nd ` T ) e. ( 1 ... ( N - 1 ) ) -> ( 2nd ` T ) e. NN ) | 
						
							| 88 | 4 87 | syl |  |-  ( ph -> ( 2nd ` T ) e. NN ) | 
						
							| 89 | 88 | nnred |  |-  ( ph -> ( 2nd ` T ) e. RR ) | 
						
							| 90 | 89 | ltp1d |  |-  ( ph -> ( 2nd ` T ) < ( ( 2nd ` T ) + 1 ) ) | 
						
							| 91 | 89 90 | ltned |  |-  ( ph -> ( 2nd ` T ) =/= ( ( 2nd ` T ) + 1 ) ) | 
						
							| 92 | 91 | necomd |  |-  ( ph -> ( ( 2nd ` T ) + 1 ) =/= ( 2nd ` T ) ) | 
						
							| 93 |  | f1veqaeq |  |-  ( ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-> ( 1 ... N ) /\ ( ( ( 2nd ` T ) + 1 ) e. ( 1 ... N ) /\ ( 2nd ` T ) e. ( 1 ... N ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) = ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) -> ( ( 2nd ` T ) + 1 ) = ( 2nd ` T ) ) ) | 
						
							| 94 | 61 23 19 93 | syl12anc |  |-  ( ph -> ( ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) = ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) -> ( ( 2nd ` T ) + 1 ) = ( 2nd ` T ) ) ) | 
						
							| 95 | 94 | necon3d |  |-  ( ph -> ( ( ( 2nd ` T ) + 1 ) =/= ( 2nd ` T ) -> ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) =/= ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) ) ) | 
						
							| 96 | 92 95 | mpd |  |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) =/= ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) ) | 
						
							| 97 | 96 | neneqd |  |-  ( ph -> -. ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) = ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) ) | 
						
							| 98 | 74 80 | opth |  |-  ( <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. = <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. <-> ( ( 2nd ` T ) = ( 2nd ` T ) /\ ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) = ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) ) ) | 
						
							| 99 | 98 | simprbi |  |-  ( <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. = <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. -> ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) = ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) ) | 
						
							| 100 | 97 99 | nsyl |  |-  ( ph -> -. <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. = <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. ) | 
						
							| 101 | 91 | neneqd |  |-  ( ph -> -. ( 2nd ` T ) = ( ( 2nd ` T ) + 1 ) ) | 
						
							| 102 | 74 80 | opth1 |  |-  ( <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. = <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. -> ( 2nd ` T ) = ( ( 2nd ` T ) + 1 ) ) | 
						
							| 103 | 101 102 | nsyl |  |-  ( ph -> -. <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. = <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. ) | 
						
							| 104 |  | opex |  |-  <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. e. _V | 
						
							| 105 | 104 | snid |  |-  <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. e. { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } | 
						
							| 106 |  | elun1 |  |-  ( <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. e. { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } -> <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. e. ( { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } u. ( ( 2nd ` ( 1st ` T ) ) o. { <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) ) ) | 
						
							| 107 | 105 106 | ax-mp |  |-  <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. e. ( { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } u. ( ( 2nd ` ( 1st ` T ) ) o. { <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) ) | 
						
							| 108 |  | eleq2 |  |-  ( ( { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } u. ( ( 2nd ` ( 1st ` T ) ) o. { <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) ) = { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. , <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } -> ( <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. e. ( { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } u. ( ( 2nd ` ( 1st ` T ) ) o. { <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) ) <-> <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. e. { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. , <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } ) ) | 
						
							| 109 | 107 108 | mpbii |  |-  ( ( { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } u. ( ( 2nd ` ( 1st ` T ) ) o. { <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) ) = { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. , <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } -> <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. e. { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. , <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } ) | 
						
							| 110 | 104 | elpr |  |-  ( <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. e. { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. , <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } <-> ( <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. = <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. \/ <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. = <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. ) ) | 
						
							| 111 |  | oran |  |-  ( ( <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. = <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. \/ <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. = <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. ) <-> -. ( -. <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. = <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. /\ -. <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. = <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. ) ) | 
						
							| 112 | 110 111 | bitri |  |-  ( <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. e. { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. , <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } <-> -. ( -. <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. = <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. /\ -. <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. = <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. ) ) | 
						
							| 113 | 109 112 | sylib |  |-  ( ( { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } u. ( ( 2nd ` ( 1st ` T ) ) o. { <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) ) = { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. , <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } -> -. ( -. <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. = <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. /\ -. <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. = <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. ) ) | 
						
							| 114 | 113 | necon2ai |  |-  ( ( -. <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. = <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. /\ -. <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. = <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. ) -> ( { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } u. ( ( 2nd ` ( 1st ` T ) ) o. { <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) ) =/= { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. , <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } ) | 
						
							| 115 | 100 103 114 | syl2anc |  |-  ( ph -> ( { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } u. ( ( 2nd ` ( 1st ` T ) ) o. { <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) ) =/= { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. , <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } ) | 
						
							| 116 | 86 115 | eqnetrd |  |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) o. { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) =/= { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. , <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } ) | 
						
							| 117 |  | fnressn |  |-  ( ( ( 2nd ` ( 1st ` T ) ) Fn ( 1 ... N ) /\ ( 2nd ` T ) e. ( 1 ... N ) ) -> ( ( 2nd ` ( 1st ` T ) ) |` { ( 2nd ` T ) } ) = { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. } ) | 
						
							| 118 | 68 19 117 | syl2anc |  |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) |` { ( 2nd ` T ) } ) = { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. } ) | 
						
							| 119 |  | fnressn |  |-  ( ( ( 2nd ` ( 1st ` T ) ) Fn ( 1 ... N ) /\ ( ( 2nd ` T ) + 1 ) e. ( 1 ... N ) ) -> ( ( 2nd ` ( 1st ` T ) ) |` { ( ( 2nd ` T ) + 1 ) } ) = { <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } ) | 
						
							| 120 | 68 23 119 | syl2anc |  |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) |` { ( ( 2nd ` T ) + 1 ) } ) = { <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } ) | 
						
							| 121 | 118 120 | uneq12d |  |-  ( ph -> ( ( ( 2nd ` ( 1st ` T ) ) |` { ( 2nd ` T ) } ) u. ( ( 2nd ` ( 1st ` T ) ) |` { ( ( 2nd ` T ) + 1 ) } ) ) = ( { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. } u. { <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } ) ) | 
						
							| 122 |  | df-pr |  |-  { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } = ( { ( 2nd ` T ) } u. { ( ( 2nd ` T ) + 1 ) } ) | 
						
							| 123 | 122 | reseq2i |  |-  ( ( 2nd ` ( 1st ` T ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = ( ( 2nd ` ( 1st ` T ) ) |` ( { ( 2nd ` T ) } u. { ( ( 2nd ` T ) + 1 ) } ) ) | 
						
							| 124 |  | resundi |  |-  ( ( 2nd ` ( 1st ` T ) ) |` ( { ( 2nd ` T ) } u. { ( ( 2nd ` T ) + 1 ) } ) ) = ( ( ( 2nd ` ( 1st ` T ) ) |` { ( 2nd ` T ) } ) u. ( ( 2nd ` ( 1st ` T ) ) |` { ( ( 2nd ` T ) + 1 ) } ) ) | 
						
							| 125 | 123 124 | eqtri |  |-  ( ( 2nd ` ( 1st ` T ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = ( ( ( 2nd ` ( 1st ` T ) ) |` { ( 2nd ` T ) } ) u. ( ( 2nd ` ( 1st ` T ) ) |` { ( ( 2nd ` T ) + 1 ) } ) ) | 
						
							| 126 |  | df-pr |  |-  { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. , <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } = ( { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. } u. { <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } ) | 
						
							| 127 | 121 125 126 | 3eqtr4g |  |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. , <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } ) | 
						
							| 128 | 1 2 3 4 5 | poimirlem8 |  |-  ( ph -> ( ( 2nd ` ( 1st ` U ) ) |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = ( ( 2nd ` ( 1st ` T ) ) |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) | 
						
							| 129 |  | uneq12 |  |-  ( ( ( ( 2nd ` ( 1st ` U ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = ( ( 2nd ` ( 1st ` T ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) /\ ( ( 2nd ` ( 1st ` U ) ) |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = ( ( 2nd ` ( 1st ` T ) ) |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) -> ( ( ( 2nd ` ( 1st ` U ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) u. ( ( 2nd ` ( 1st ` U ) ) |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) u. ( ( 2nd ` ( 1st ` T ) ) |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) | 
						
							| 130 |  | resundi |  |-  ( ( 2nd ` ( 1st ` T ) ) |` ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) u. ( ( 2nd ` ( 1st ` T ) ) |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) | 
						
							| 131 | 26 | reseq2d |  |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) |` ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) = ( ( 2nd ` ( 1st ` T ) ) |` ( 1 ... N ) ) ) | 
						
							| 132 |  | fnresdm |  |-  ( ( 2nd ` ( 1st ` T ) ) Fn ( 1 ... N ) -> ( ( 2nd ` ( 1st ` T ) ) |` ( 1 ... N ) ) = ( 2nd ` ( 1st ` T ) ) ) | 
						
							| 133 | 59 67 132 | 3syl |  |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) |` ( 1 ... N ) ) = ( 2nd ` ( 1st ` T ) ) ) | 
						
							| 134 | 131 133 | eqtrd |  |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) |` ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) = ( 2nd ` ( 1st ` T ) ) ) | 
						
							| 135 | 130 134 | eqtr3id |  |-  ( ph -> ( ( ( 2nd ` ( 1st ` T ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) u. ( ( 2nd ` ( 1st ` T ) ) |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) = ( 2nd ` ( 1st ` T ) ) ) | 
						
							| 136 | 41 135 | eqeq12d |  |-  ( ph -> ( ( ( ( 2nd ` ( 1st ` U ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) u. ( ( 2nd ` ( 1st ` U ) ) |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) u. ( ( 2nd ` ( 1st ` T ) ) |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) <-> ( 2nd ` ( 1st ` U ) ) = ( 2nd ` ( 1st ` T ) ) ) ) | 
						
							| 137 | 129 136 | imbitrid |  |-  ( ph -> ( ( ( ( 2nd ` ( 1st ` U ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = ( ( 2nd ` ( 1st ` T ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) /\ ( ( 2nd ` ( 1st ` U ) ) |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = ( ( 2nd ` ( 1st ` T ) ) |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) -> ( 2nd ` ( 1st ` U ) ) = ( 2nd ` ( 1st ` T ) ) ) ) | 
						
							| 138 | 128 137 | mpan2d |  |-  ( ph -> ( ( ( 2nd ` ( 1st ` U ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = ( ( 2nd ` ( 1st ` T ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) -> ( 2nd ` ( 1st ` U ) ) = ( 2nd ` ( 1st ` T ) ) ) ) | 
						
							| 139 | 138 | necon3d |  |-  ( ph -> ( ( 2nd ` ( 1st ` U ) ) =/= ( 2nd ` ( 1st ` T ) ) -> ( ( 2nd ` ( 1st ` U ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) =/= ( ( 2nd ` ( 1st ` T ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) | 
						
							| 140 | 6 139 | mpd |  |-  ( ph -> ( ( 2nd ` ( 1st ` U ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) =/= ( ( 2nd ` ( 1st ` T ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) | 
						
							| 141 | 140 | necomd |  |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) =/= ( ( 2nd ` ( 1st ` U ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) | 
						
							| 142 | 127 141 | eqnetrrd |  |-  ( ph -> { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. , <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } =/= ( ( 2nd ` ( 1st ` U ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) | 
						
							| 143 |  | prex |  |-  { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } e. _V | 
						
							| 144 | 56 143 | coex |  |-  ( ( 2nd ` ( 1st ` T ) ) o. { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) e. _V | 
						
							| 145 |  | prex |  |-  { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. , <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } e. _V | 
						
							| 146 | 33 | resex |  |-  ( ( 2nd ` ( 1st ` U ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) e. _V | 
						
							| 147 |  | hashtpg |  |-  ( ( ( ( 2nd ` ( 1st ` T ) ) o. { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) e. _V /\ { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. , <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } e. _V /\ ( ( 2nd ` ( 1st ` U ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) e. _V ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) o. { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) =/= { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. , <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } /\ { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. , <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } =/= ( ( 2nd ` ( 1st ` U ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) /\ ( ( 2nd ` ( 1st ` U ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) =/= ( ( 2nd ` ( 1st ` T ) ) o. { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) ) <-> ( # ` { ( ( 2nd ` ( 1st ` T ) ) o. { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) , { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. , <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } , ( ( 2nd ` ( 1st ` U ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) } ) = 3 ) ) | 
						
							| 148 | 144 145 146 147 | mp3an |  |-  ( ( ( ( 2nd ` ( 1st ` T ) ) o. { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) =/= { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. , <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } /\ { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. , <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } =/= ( ( 2nd ` ( 1st ` U ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) /\ ( ( 2nd ` ( 1st ` U ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) =/= ( ( 2nd ` ( 1st ` T ) ) o. { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) ) <-> ( # ` { ( ( 2nd ` ( 1st ` T ) ) o. { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) , { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. , <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } , ( ( 2nd ` ( 1st ` U ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) } ) = 3 ) | 
						
							| 149 | 148 | biimpi |  |-  ( ( ( ( 2nd ` ( 1st ` T ) ) o. { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) =/= { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. , <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } /\ { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. , <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } =/= ( ( 2nd ` ( 1st ` U ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) /\ ( ( 2nd ` ( 1st ` U ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) =/= ( ( 2nd ` ( 1st ` T ) ) o. { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) ) -> ( # ` { ( ( 2nd ` ( 1st ` T ) ) o. { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) , { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. , <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } , ( ( 2nd ` ( 1st ` U ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) } ) = 3 ) | 
						
							| 150 | 149 | 3expia |  |-  ( ( ( ( 2nd ` ( 1st ` T ) ) o. { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) =/= { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. , <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } /\ { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. , <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } =/= ( ( 2nd ` ( 1st ` U ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) -> ( ( ( 2nd ` ( 1st ` U ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) =/= ( ( 2nd ` ( 1st ` T ) ) o. { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) -> ( # ` { ( ( 2nd ` ( 1st ` T ) ) o. { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) , { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. , <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } , ( ( 2nd ` ( 1st ` U ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) } ) = 3 ) ) | 
						
							| 151 | 116 142 150 | syl2anc |  |-  ( ph -> ( ( ( 2nd ` ( 1st ` U ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) =/= ( ( 2nd ` ( 1st ` T ) ) o. { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) -> ( # ` { ( ( 2nd ` ( 1st ` T ) ) o. { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) , { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. , <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } , ( ( 2nd ` ( 1st ` U ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) } ) = 3 ) ) | 
						
							| 152 |  | prex |  |-  { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } e. _V | 
						
							| 153 |  | prex |  |-  { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } e. _V | 
						
							| 154 | 152 153 | mapval |  |-  ( { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } ^m { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = { f | f : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } --> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } } | 
						
							| 155 |  | prfi |  |-  { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } e. Fin | 
						
							| 156 |  | prfi |  |-  { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } e. Fin | 
						
							| 157 |  | mapfi |  |-  ( ( { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } e. Fin /\ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } e. Fin ) -> ( { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } ^m { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) e. Fin ) | 
						
							| 158 | 155 156 157 | mp2an |  |-  ( { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } ^m { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) e. Fin | 
						
							| 159 | 154 158 | eqeltrri |  |-  { f | f : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } --> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } } e. Fin | 
						
							| 160 |  | f1of |  |-  ( f : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } -> f : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } --> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } ) | 
						
							| 161 | 160 | ss2abi |  |-  { f | f : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } } C_ { f | f : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } --> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } } | 
						
							| 162 |  | ssfi |  |-  ( ( { f | f : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } --> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } } e. Fin /\ { f | f : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } } C_ { f | f : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } --> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } } ) -> { f | f : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } } e. Fin ) | 
						
							| 163 | 159 161 162 | mp2an |  |-  { f | f : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } } e. Fin | 
						
							| 164 | 23 19 | prssd |  |-  ( ph -> { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } C_ ( 1 ... N ) ) | 
						
							| 165 |  | f1ores |  |-  ( ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-> ( 1 ... N ) /\ { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } C_ ( 1 ... N ) ) -> ( ( 2nd ` ( 1st ` T ) ) |` { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } ) : { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } -1-1-onto-> ( ( 2nd ` ( 1st ` T ) ) " { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } ) ) | 
						
							| 166 | 61 164 165 | syl2anc |  |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) |` { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } ) : { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } -1-1-onto-> ( ( 2nd ` ( 1st ` T ) ) " { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } ) ) | 
						
							| 167 |  | fnimapr |  |-  ( ( ( 2nd ` ( 1st ` T ) ) Fn ( 1 ... N ) /\ ( ( 2nd ` T ) + 1 ) e. ( 1 ... N ) /\ ( 2nd ` T ) e. ( 1 ... N ) ) -> ( ( 2nd ` ( 1st ` T ) ) " { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } ) = { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } ) | 
						
							| 168 | 68 23 19 167 | syl3anc |  |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) " { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } ) = { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } ) | 
						
							| 169 | 168 | f1oeq3d |  |-  ( ph -> ( ( ( 2nd ` ( 1st ` T ) ) |` { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } ) : { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } -1-1-onto-> ( ( 2nd ` ( 1st ` T ) ) " { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } ) <-> ( ( 2nd ` ( 1st ` T ) ) |` { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } ) : { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } -1-1-onto-> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } ) ) | 
						
							| 170 | 166 169 | mpbid |  |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) |` { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } ) : { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } -1-1-onto-> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } ) | 
						
							| 171 |  | f1oprg |  |-  ( ( ( ( 2nd ` T ) e. _V /\ ( ( 2nd ` T ) + 1 ) e. _V ) /\ ( ( ( 2nd ` T ) + 1 ) e. _V /\ ( 2nd ` T ) e. _V ) ) -> ( ( ( 2nd ` T ) =/= ( ( 2nd ` T ) + 1 ) /\ ( ( 2nd ` T ) + 1 ) =/= ( 2nd ` T ) ) -> { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } ) ) | 
						
							| 172 | 74 75 75 74 171 | mp4an |  |-  ( ( ( 2nd ` T ) =/= ( ( 2nd ` T ) + 1 ) /\ ( ( 2nd ` T ) + 1 ) =/= ( 2nd ` T ) ) -> { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } ) | 
						
							| 173 | 91 92 172 | syl2anc |  |-  ( ph -> { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } ) | 
						
							| 174 |  | f1oco |  |-  ( ( ( ( 2nd ` ( 1st ` T ) ) |` { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } ) : { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } -1-1-onto-> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } /\ { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } ) -> ( ( ( 2nd ` ( 1st ` T ) ) |` { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } ) o. { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } ) | 
						
							| 175 | 170 173 174 | syl2anc |  |-  ( ph -> ( ( ( 2nd ` ( 1st ` T ) ) |` { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } ) o. { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } ) | 
						
							| 176 |  | rnpropg |  |-  ( ( ( 2nd ` T ) e. _V /\ ( ( 2nd ` T ) + 1 ) e. _V ) -> ran { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } = { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } ) | 
						
							| 177 | 74 75 176 | mp2an |  |-  ran { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } = { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } | 
						
							| 178 | 177 | eqimssi |  |-  ran { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } C_ { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } | 
						
							| 179 |  | cores |  |-  ( ran { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } C_ { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } -> ( ( ( 2nd ` ( 1st ` T ) ) |` { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } ) o. { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) = ( ( 2nd ` ( 1st ` T ) ) o. { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) ) | 
						
							| 180 |  | f1oeq1 |  |-  ( ( ( ( 2nd ` ( 1st ` T ) ) |` { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } ) o. { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) = ( ( 2nd ` ( 1st ` T ) ) o. { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) |` { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } ) o. { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } <-> ( ( 2nd ` ( 1st ` T ) ) o. { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } ) ) | 
						
							| 181 | 178 179 180 | mp2b |  |-  ( ( ( ( 2nd ` ( 1st ` T ) ) |` { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } ) o. { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } <-> ( ( 2nd ` ( 1st ` T ) ) o. { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } ) | 
						
							| 182 | 175 181 | sylib |  |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) o. { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } ) | 
						
							| 183 | 96 | necomd |  |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) =/= ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) ) | 
						
							| 184 |  | fvex |  |-  ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) e. _V | 
						
							| 185 |  | f1oprg |  |-  ( ( ( ( 2nd ` T ) e. _V /\ ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) e. _V ) /\ ( ( ( 2nd ` T ) + 1 ) e. _V /\ ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) e. _V ) ) -> ( ( ( 2nd ` T ) =/= ( ( 2nd ` T ) + 1 ) /\ ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) =/= ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) ) -> { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. , <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) } ) ) | 
						
							| 186 | 74 184 75 80 185 | mp4an |  |-  ( ( ( 2nd ` T ) =/= ( ( 2nd ` T ) + 1 ) /\ ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) =/= ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) ) -> { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. , <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) } ) | 
						
							| 187 | 91 183 186 | syl2anc |  |-  ( ph -> { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. , <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) } ) | 
						
							| 188 |  | prcom |  |-  { ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) } = { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } | 
						
							| 189 |  | f1oeq3 |  |-  ( { ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) } = { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } -> ( { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. , <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) } <-> { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. , <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } ) ) | 
						
							| 190 | 188 189 | ax-mp |  |-  ( { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. , <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) } <-> { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. , <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } ) | 
						
							| 191 | 187 190 | sylib |  |-  ( ph -> { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. , <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } ) | 
						
							| 192 |  | f1of1 |  |-  ( ( 2nd ` ( 1st ` U ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> ( 2nd ` ( 1st ` U ) ) : ( 1 ... N ) -1-1-> ( 1 ... N ) ) | 
						
							| 193 | 36 192 | syl |  |-  ( ph -> ( 2nd ` ( 1st ` U ) ) : ( 1 ... N ) -1-1-> ( 1 ... N ) ) | 
						
							| 194 |  | f1ores |  |-  ( ( ( 2nd ` ( 1st ` U ) ) : ( 1 ... N ) -1-1-> ( 1 ... N ) /\ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } C_ ( 1 ... N ) ) -> ( ( 2nd ` ( 1st ` U ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> ( ( 2nd ` ( 1st ` U ) ) " { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) | 
						
							| 195 | 193 24 194 | syl2anc |  |-  ( ph -> ( ( 2nd ` ( 1st ` U ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> ( ( 2nd ` ( 1st ` U ) ) " { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) | 
						
							| 196 |  | dff1o3 |  |-  ( ( 2nd ` ( 1st ` U ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( ( 2nd ` ( 1st ` U ) ) : ( 1 ... N ) -onto-> ( 1 ... N ) /\ Fun `' ( 2nd ` ( 1st ` U ) ) ) ) | 
						
							| 197 | 196 | simprbi |  |-  ( ( 2nd ` ( 1st ` U ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> Fun `' ( 2nd ` ( 1st ` U ) ) ) | 
						
							| 198 |  | imadif |  |-  ( Fun `' ( 2nd ` ( 1st ` U ) ) -> ( ( 2nd ` ( 1st ` U ) ) " ( ( 1 ... N ) \ ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) = ( ( ( 2nd ` ( 1st ` U ) ) " ( 1 ... N ) ) \ ( ( 2nd ` ( 1st ` U ) ) " ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) | 
						
							| 199 | 36 197 198 | 3syl |  |-  ( ph -> ( ( 2nd ` ( 1st ` U ) ) " ( ( 1 ... N ) \ ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) = ( ( ( 2nd ` ( 1st ` U ) ) " ( 1 ... N ) ) \ ( ( 2nd ` ( 1st ` U ) ) " ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) | 
						
							| 200 |  | f1ofo |  |-  ( ( 2nd ` ( 1st ` U ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> ( 2nd ` ( 1st ` U ) ) : ( 1 ... N ) -onto-> ( 1 ... N ) ) | 
						
							| 201 |  | foima |  |-  ( ( 2nd ` ( 1st ` U ) ) : ( 1 ... N ) -onto-> ( 1 ... N ) -> ( ( 2nd ` ( 1st ` U ) ) " ( 1 ... N ) ) = ( 1 ... N ) ) | 
						
							| 202 | 36 200 201 | 3syl |  |-  ( ph -> ( ( 2nd ` ( 1st ` U ) ) " ( 1 ... N ) ) = ( 1 ... N ) ) | 
						
							| 203 |  | f1ofo |  |-  ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -onto-> ( 1 ... N ) ) | 
						
							| 204 |  | foima |  |-  ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -onto-> ( 1 ... N ) -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) = ( 1 ... N ) ) | 
						
							| 205 | 59 203 204 | 3syl |  |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) = ( 1 ... N ) ) | 
						
							| 206 | 202 205 | eqtr4d |  |-  ( ph -> ( ( 2nd ` ( 1st ` U ) ) " ( 1 ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) ) | 
						
							| 207 | 128 | rneqd |  |-  ( ph -> ran ( ( 2nd ` ( 1st ` U ) ) |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = ran ( ( 2nd ` ( 1st ` T ) ) |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) | 
						
							| 208 |  | df-ima |  |-  ( ( 2nd ` ( 1st ` U ) ) " ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = ran ( ( 2nd ` ( 1st ` U ) ) |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) | 
						
							| 209 |  | df-ima |  |-  ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = ran ( ( 2nd ` ( 1st ` T ) ) |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) | 
						
							| 210 | 207 208 209 | 3eqtr4g |  |-  ( ph -> ( ( 2nd ` ( 1st ` U ) ) " ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) | 
						
							| 211 | 206 210 | difeq12d |  |-  ( ph -> ( ( ( 2nd ` ( 1st ` U ) ) " ( 1 ... N ) ) \ ( ( 2nd ` ( 1st ` U ) ) " ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) \ ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) | 
						
							| 212 |  | dff1o3 |  |-  ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -onto-> ( 1 ... N ) /\ Fun `' ( 2nd ` ( 1st ` T ) ) ) ) | 
						
							| 213 | 212 | simprbi |  |-  ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> Fun `' ( 2nd ` ( 1st ` T ) ) ) | 
						
							| 214 |  | imadif |  |-  ( Fun `' ( 2nd ` ( 1st ` T ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... N ) \ ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) \ ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) | 
						
							| 215 | 59 213 214 | 3syl |  |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... N ) \ ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) \ ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) | 
						
							| 216 |  | dfin4 |  |-  ( ( 1 ... N ) i^i { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = ( ( 1 ... N ) \ ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) | 
						
							| 217 |  | sseqin2 |  |-  ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } C_ ( 1 ... N ) <-> ( ( 1 ... N ) i^i { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) | 
						
							| 218 | 24 217 | sylib |  |-  ( ph -> ( ( 1 ... N ) i^i { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) | 
						
							| 219 | 216 218 | eqtr3id |  |-  ( ph -> ( ( 1 ... N ) \ ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) | 
						
							| 220 | 219 | imaeq2d |  |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... N ) \ ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) = ( ( 2nd ` ( 1st ` T ) ) " { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) | 
						
							| 221 | 215 220 | eqtr3d |  |-  ( ph -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) \ ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) = ( ( 2nd ` ( 1st ` T ) ) " { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) | 
						
							| 222 | 199 211 221 | 3eqtrd |  |-  ( ph -> ( ( 2nd ` ( 1st ` U ) ) " ( ( 1 ... N ) \ ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) = ( ( 2nd ` ( 1st ` T ) ) " { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) | 
						
							| 223 | 219 | imaeq2d |  |-  ( ph -> ( ( 2nd ` ( 1st ` U ) ) " ( ( 1 ... N ) \ ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) = ( ( 2nd ` ( 1st ` U ) ) " { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) | 
						
							| 224 |  | fnimapr |  |-  ( ( ( 2nd ` ( 1st ` T ) ) Fn ( 1 ... N ) /\ ( 2nd ` T ) e. ( 1 ... N ) /\ ( ( 2nd ` T ) + 1 ) e. ( 1 ... N ) ) -> ( ( 2nd ` ( 1st ` T ) ) " { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = { ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) } ) | 
						
							| 225 | 68 19 23 224 | syl3anc |  |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) " { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = { ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) } ) | 
						
							| 226 | 225 188 | eqtrdi |  |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) " { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } ) | 
						
							| 227 | 222 223 226 | 3eqtr3d |  |-  ( ph -> ( ( 2nd ` ( 1st ` U ) ) " { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } ) | 
						
							| 228 | 227 | f1oeq3d |  |-  ( ph -> ( ( ( 2nd ` ( 1st ` U ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> ( ( 2nd ` ( 1st ` U ) ) " { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) <-> ( ( 2nd ` ( 1st ` U ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } ) ) | 
						
							| 229 | 195 228 | mpbid |  |-  ( ph -> ( ( 2nd ` ( 1st ` U ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } ) | 
						
							| 230 |  | ssabral |  |-  ( { ( ( 2nd ` ( 1st ` T ) ) o. { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) , { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. , <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } , ( ( 2nd ` ( 1st ` U ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) } C_ { f | f : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } } <-> A. f e. { ( ( 2nd ` ( 1st ` T ) ) o. { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) , { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. , <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } , ( ( 2nd ` ( 1st ` U ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) } f : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } ) | 
						
							| 231 |  | f1oeq1 |  |-  ( f = ( ( 2nd ` ( 1st ` T ) ) o. { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) -> ( f : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } <-> ( ( 2nd ` ( 1st ` T ) ) o. { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } ) ) | 
						
							| 232 |  | f1oeq1 |  |-  ( f = { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. , <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } -> ( f : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } <-> { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. , <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } ) ) | 
						
							| 233 |  | f1oeq1 |  |-  ( f = ( ( 2nd ` ( 1st ` U ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) -> ( f : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } <-> ( ( 2nd ` ( 1st ` U ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } ) ) | 
						
							| 234 | 144 145 146 231 232 233 | raltp |  |-  ( A. f e. { ( ( 2nd ` ( 1st ` T ) ) o. { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) , { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. , <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } , ( ( 2nd ` ( 1st ` U ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) } f : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } <-> ( ( ( 2nd ` ( 1st ` T ) ) o. { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } /\ { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. , <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } /\ ( ( 2nd ` ( 1st ` U ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } ) ) | 
						
							| 235 | 230 234 | bitri |  |-  ( { ( ( 2nd ` ( 1st ` T ) ) o. { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) , { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. , <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } , ( ( 2nd ` ( 1st ` U ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) } C_ { f | f : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } } <-> ( ( ( 2nd ` ( 1st ` T ) ) o. { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } /\ { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. , <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } /\ ( ( 2nd ` ( 1st ` U ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } ) ) | 
						
							| 236 | 182 191 229 235 | syl3anbrc |  |-  ( ph -> { ( ( 2nd ` ( 1st ` T ) ) o. { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) , { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. , <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } , ( ( 2nd ` ( 1st ` U ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) } C_ { f | f : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } } ) | 
						
							| 237 |  | hashss |  |-  ( ( { f | f : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } } e. Fin /\ { ( ( 2nd ` ( 1st ` T ) ) o. { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) , { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. , <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } , ( ( 2nd ` ( 1st ` U ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) } C_ { f | f : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } } ) -> ( # ` { ( ( 2nd ` ( 1st ` T ) ) o. { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) , { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. , <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } , ( ( 2nd ` ( 1st ` U ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) } ) <_ ( # ` { f | f : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } } ) ) | 
						
							| 238 | 163 236 237 | sylancr |  |-  ( ph -> ( # ` { ( ( 2nd ` ( 1st ` T ) ) o. { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) , { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. , <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } , ( ( 2nd ` ( 1st ` U ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) } ) <_ ( # ` { f | f : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } } ) ) | 
						
							| 239 | 153 | enref |  |-  { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ~~ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } | 
						
							| 240 |  | hashprg |  |-  ( ( ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) e. _V /\ ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) e. _V ) -> ( ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) =/= ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) <-> ( # ` { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } ) = 2 ) ) | 
						
							| 241 | 80 184 240 | mp2an |  |-  ( ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) =/= ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) <-> ( # ` { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } ) = 2 ) | 
						
							| 242 | 96 241 | sylib |  |-  ( ph -> ( # ` { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } ) = 2 ) | 
						
							| 243 |  | hashprg |  |-  ( ( ( 2nd ` T ) e. _V /\ ( ( 2nd ` T ) + 1 ) e. _V ) -> ( ( 2nd ` T ) =/= ( ( 2nd ` T ) + 1 ) <-> ( # ` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = 2 ) ) | 
						
							| 244 | 74 75 243 | mp2an |  |-  ( ( 2nd ` T ) =/= ( ( 2nd ` T ) + 1 ) <-> ( # ` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = 2 ) | 
						
							| 245 | 91 244 | sylib |  |-  ( ph -> ( # ` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = 2 ) | 
						
							| 246 | 242 245 | eqtr4d |  |-  ( ph -> ( # ` { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } ) = ( # ` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) | 
						
							| 247 |  | hashen |  |-  ( ( { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } e. Fin /\ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } e. Fin ) -> ( ( # ` { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } ) = ( # ` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) <-> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } ~~ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) | 
						
							| 248 | 155 156 247 | mp2an |  |-  ( ( # ` { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } ) = ( # ` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) <-> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } ~~ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) | 
						
							| 249 | 246 248 | sylib |  |-  ( ph -> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } ~~ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) | 
						
							| 250 |  | hashfacen |  |-  ( ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ~~ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } /\ { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } ~~ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) -> { f | f : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } } ~~ { f | f : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } } ) | 
						
							| 251 | 239 249 250 | sylancr |  |-  ( ph -> { f | f : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } } ~~ { f | f : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } } ) | 
						
							| 252 | 153 153 | mapval |  |-  ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ^m { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = { f | f : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } --> { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } } | 
						
							| 253 |  | mapfi |  |-  ( ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } e. Fin /\ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } e. Fin ) -> ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ^m { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) e. Fin ) | 
						
							| 254 | 156 156 253 | mp2an |  |-  ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ^m { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) e. Fin | 
						
							| 255 | 252 254 | eqeltrri |  |-  { f | f : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } --> { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } } e. Fin | 
						
							| 256 |  | f1of |  |-  ( f : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -> f : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } --> { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) | 
						
							| 257 | 256 | ss2abi |  |-  { f | f : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } } C_ { f | f : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } --> { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } } | 
						
							| 258 |  | ssfi |  |-  ( ( { f | f : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } --> { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } } e. Fin /\ { f | f : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } } C_ { f | f : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } --> { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } } ) -> { f | f : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } } e. Fin ) | 
						
							| 259 | 255 257 258 | mp2an |  |-  { f | f : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } } e. Fin | 
						
							| 260 |  | hashen |  |-  ( ( { f | f : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } } e. Fin /\ { f | f : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } } e. Fin ) -> ( ( # ` { f | f : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } } ) = ( # ` { f | f : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } } ) <-> { f | f : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } } ~~ { f | f : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } } ) ) | 
						
							| 261 | 163 259 260 | mp2an |  |-  ( ( # ` { f | f : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } } ) = ( # ` { f | f : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } } ) <-> { f | f : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } } ~~ { f | f : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } } ) | 
						
							| 262 | 251 261 | sylibr |  |-  ( ph -> ( # ` { f | f : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } } ) = ( # ` { f | f : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } } ) ) | 
						
							| 263 |  | hashfac |  |-  ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } e. Fin -> ( # ` { f | f : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } } ) = ( ! ` ( # ` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) | 
						
							| 264 | 156 263 | ax-mp |  |-  ( # ` { f | f : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } } ) = ( ! ` ( # ` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) | 
						
							| 265 | 245 | fveq2d |  |-  ( ph -> ( ! ` ( # ` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = ( ! ` 2 ) ) | 
						
							| 266 |  | fac2 |  |-  ( ! ` 2 ) = 2 | 
						
							| 267 | 265 266 | eqtrdi |  |-  ( ph -> ( ! ` ( # ` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = 2 ) | 
						
							| 268 | 264 267 | eqtrid |  |-  ( ph -> ( # ` { f | f : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } } ) = 2 ) | 
						
							| 269 | 262 268 | eqtrd |  |-  ( ph -> ( # ` { f | f : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) } } ) = 2 ) | 
						
							| 270 | 238 269 | breqtrd |  |-  ( ph -> ( # ` { ( ( 2nd ` ( 1st ` T ) ) o. { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) , { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. , <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } , ( ( 2nd ` ( 1st ` U ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) } ) <_ 2 ) | 
						
							| 271 |  | breq1 |  |-  ( ( # ` { ( ( 2nd ` ( 1st ` T ) ) o. { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) , { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. , <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } , ( ( 2nd ` ( 1st ` U ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) } ) = 3 -> ( ( # ` { ( ( 2nd ` ( 1st ` T ) ) o. { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) , { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. , <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } , ( ( 2nd ` ( 1st ` U ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) } ) <_ 2 <-> 3 <_ 2 ) ) | 
						
							| 272 | 270 271 | syl5ibcom |  |-  ( ph -> ( ( # ` { ( ( 2nd ` ( 1st ` T ) ) o. { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) , { <. ( 2nd ` T ) , ( ( 2nd ` ( 1st ` T ) ) ` ( 2nd ` T ) ) >. , <. ( ( 2nd ` T ) + 1 ) , ( ( 2nd ` ( 1st ` T ) ) ` ( ( 2nd ` T ) + 1 ) ) >. } , ( ( 2nd ` ( 1st ` U ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) } ) = 3 -> 3 <_ 2 ) ) | 
						
							| 273 | 151 272 | syld |  |-  ( ph -> ( ( ( 2nd ` ( 1st ` U ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) =/= ( ( 2nd ` ( 1st ` T ) ) o. { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) -> 3 <_ 2 ) ) | 
						
							| 274 | 273 | necon1bd |  |-  ( ph -> ( -. 3 <_ 2 -> ( ( 2nd ` ( 1st ` U ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = ( ( 2nd ` ( 1st ` T ) ) o. { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) ) ) | 
						
							| 275 | 46 274 | mpi |  |-  ( ph -> ( ( 2nd ` ( 1st ` U ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = ( ( 2nd ` ( 1st ` T ) ) o. { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) ) | 
						
							| 276 |  | coires1 |  |-  ( ( 2nd ` ( 1st ` T ) ) o. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) = ( ( 2nd ` ( 1st ` T ) ) |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) | 
						
							| 277 | 128 276 | eqtr4di |  |-  ( ph -> ( ( 2nd ` ( 1st ` U ) ) |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = ( ( 2nd ` ( 1st ` T ) ) o. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) | 
						
							| 278 | 275 277 | uneq12d |  |-  ( ph -> ( ( ( 2nd ` ( 1st ` U ) ) |` { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) u. ( ( 2nd ` ( 1st ` U ) ) |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) o. { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) u. ( ( 2nd ` ( 1st ` T ) ) o. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) ) | 
						
							| 279 | 41 278 | eqtr3d |  |-  ( ph -> ( 2nd ` ( 1st ` U ) ) = ( ( ( 2nd ` ( 1st ` T ) ) o. { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) u. ( ( 2nd ` ( 1st ` T ) ) o. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) ) | 
						
							| 280 |  | coundi |  |-  ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) o. { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) u. ( ( 2nd ` ( 1st ` T ) ) o. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) | 
						
							| 281 | 279 280 | eqtr4di |  |-  ( ph -> ( 2nd ` ( 1st ` U ) ) = ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) ) |