Metamath Proof Explorer


Theorem aalioulem2

Description: Lemma for aaliou . (Contributed by Stefan O'Rear, 15-Nov-2014) (Proof shortened by AV, 28-Sep-2020)

Ref Expression
Hypotheses aalioulem2.a N=degF
aalioulem2.b φFPoly
aalioulem2.c φN
aalioulem2.d φA
Assertion aalioulem2 φx+pqFpq=0A=pqxqNApq

Proof

Step Hyp Ref Expression
1 aalioulem2.a N=degF
2 aalioulem2.b φFPoly
3 aalioulem2.c φN
4 aalioulem2.d φA
5 1rp 1+
6 snssi 1+1+
7 5 6 ax-mp 1+
8 ssrab2 a+|bF-10a=Ab+
9 7 8 unssi 1a+|bF-10a=Ab+
10 ltso <Or
11 10 a1i φ<Or
12 snfi 1Fin
13 3 nnne0d φN0
14 1 eqcomi degF=N
15 dgr0 deg0𝑝=0
16 13 14 15 3netr4g φdegFdeg0𝑝
17 fveq2 F=0𝑝degF=deg0𝑝
18 17 necon3i degFdeg0𝑝F0𝑝
19 16 18 syl φF0𝑝
20 eqid F-10=F-10
21 20 fta1 FPolyF0𝑝F-10FinF-10degF
22 2 19 21 syl2anc φF-10FinF-10degF
23 22 simpld φF-10Fin
24 abrexfi F-10Fina|bF-10a=AbFin
25 23 24 syl φa|bF-10a=AbFin
26 rabssab a+|bF-10a=Aba|bF-10a=Ab
27 ssfi a|bF-10a=AbFina+|bF-10a=Aba|bF-10a=Aba+|bF-10a=AbFin
28 25 26 27 sylancl φa+|bF-10a=AbFin
29 unfi 1Fina+|bF-10a=AbFin1a+|bF-10a=AbFin
30 12 28 29 sylancr φ1a+|bF-10a=AbFin
31 1ex 1V
32 31 snid 11
33 elun1 1111a+|bF-10a=Ab
34 ne0i 11a+|bF-10a=Ab1a+|bF-10a=Ab
35 32 33 34 mp2b 1a+|bF-10a=Ab
36 35 a1i φ1a+|bF-10a=Ab
37 rpssre +
38 9 37 sstri 1a+|bF-10a=Ab
39 38 a1i φ1a+|bF-10a=Ab
40 fiinfcl <Or1a+|bF-10a=AbFin1a+|bF-10a=Ab1a+|bF-10a=Absup1a+|bF-10a=Ab<1a+|bF-10a=Ab
41 11 30 36 39 40 syl13anc φsup1a+|bF-10a=Ab<1a+|bF-10a=Ab
42 9 41 sselid φsup1a+|bF-10a=Ab<+
43 0re 0
44 rpge0 d+0d
45 44 rgen d+0d
46 breq1 c=0cd0d
47 46 ralbidv c=0d+cdd+0d
48 47 rspcev 0d+0dcd+cd
49 43 45 48 mp2an cd+cd
50 ssralv 1a+|bF-10a=Ab+d+cdd1a+|bF-10a=Abcd
51 9 50 ax-mp d+cdd1a+|bF-10a=Abcd
52 51 reximi cd+cdcd1a+|bF-10a=Abcd
53 49 52 ax-mp cd1a+|bF-10a=Abcd
54 eqeq1 a=Ara=AbAr=Ab
55 54 rexbidv a=ArbF-10a=AbbF-10Ar=Ab
56 4 ad2antrr φrFr=0¬A=rA
57 simplr φrFr=0¬A=rr
58 56 57 resubcld φrFr=0¬A=rAr
59 58 recnd φrFr=0¬A=rAr
60 4 ad2antrr φrFr=0A
61 60 recnd φrFr=0A
62 simplr φrFr=0r
63 62 recnd φrFr=0r
64 61 63 subeq0ad φrFr=0Ar=0A=r
65 64 necon3abid φrFr=0Ar0¬A=r
66 65 biimprd φrFr=0¬A=rAr0
67 66 impr φrFr=0¬A=rAr0
68 59 67 absrpcld φrFr=0¬A=rAr+
69 57 recnd φrFr=0¬A=rr
70 simprl φrFr=0¬A=rFr=0
71 plyf FPolyF:
72 2 71 syl φF:
73 72 ffnd φFFn
74 73 ad2antrr φrFr=0¬A=rFFn
75 fniniseg FFnrF-10rFr=0
76 74 75 syl φrFr=0¬A=rrF-10rFr=0
77 69 70 76 mpbir2and φrFr=0¬A=rrF-10
78 eqid Ar=Ar
79 oveq2 b=rAb=Ar
80 79 fveq2d b=rAb=Ar
81 80 rspceeqv rF-10Ar=ArbF-10Ar=Ab
82 77 78 81 sylancl φrFr=0¬A=rbF-10Ar=Ab
83 55 68 82 elrabd φrFr=0¬A=rAra+|bF-10a=Ab
84 elun2 Ara+|bF-10a=AbAr1a+|bF-10a=Ab
85 83 84 syl φrFr=0¬A=rAr1a+|bF-10a=Ab
86 infrelb 1a+|bF-10a=Abcd1a+|bF-10a=AbcdAr1a+|bF-10a=Absup1a+|bF-10a=Ab<Ar
87 38 53 85 86 mp3an12i φrFr=0¬A=rsup1a+|bF-10a=Ab<Ar
88 87 expr φrFr=0¬A=rsup1a+|bF-10a=Ab<Ar
89 88 orrd φrFr=0A=rsup1a+|bF-10a=Ab<Ar
90 89 ex φrFr=0A=rsup1a+|bF-10a=Ab<Ar
91 90 ralrimiva φrFr=0A=rsup1a+|bF-10a=Ab<Ar
92 breq1 x=sup1a+|bF-10a=Ab<xArsup1a+|bF-10a=Ab<Ar
93 92 orbi2d x=sup1a+|bF-10a=Ab<A=rxArA=rsup1a+|bF-10a=Ab<Ar
94 93 imbi2d x=sup1a+|bF-10a=Ab<Fr=0A=rxArFr=0A=rsup1a+|bF-10a=Ab<Ar
95 94 ralbidv x=sup1a+|bF-10a=Ab<rFr=0A=rxArrFr=0A=rsup1a+|bF-10a=Ab<Ar
96 95 rspcev sup1a+|bF-10a=Ab<+rFr=0A=rsup1a+|bF-10a=Ab<Arx+rFr=0A=rxAr
97 42 91 96 syl2anc φx+rFr=0A=rxAr
98 fveqeq2 r=pqFr=0Fpq=0
99 eqeq2 r=pqA=rA=pq
100 oveq2 r=pqAr=Apq
101 100 fveq2d r=pqAr=Apq
102 101 breq2d r=pqxArxApq
103 99 102 orbi12d r=pqA=rxArA=pqxApq
104 98 103 imbi12d r=pqFr=0A=rxArFpq=0A=pqxApq
105 104 rspcv pqrFr=0A=rxArFpq=0A=pqxApq
106 znq pqpq
107 qre pqpq
108 106 107 syl pqpq
109 105 108 syl11 rFr=0A=rxArpqFpq=0A=pqxApq
110 109 ralrimivv rFr=0A=rxArpqFpq=0A=pqxApq
111 110 reximi x+rFr=0A=rxArx+pqFpq=0A=pqxApq
112 97 111 syl φx+pqFpq=0A=pqxApq
113 simplr φx+pqx+
114 simprr φx+pqq
115 3 nnnn0d φN0
116 115 ad2antrr φx+pqN0
117 114 116 nnexpcld φx+pqqN
118 117 nnrpd φx+pqqN+
119 113 118 rpdivcld φx+pqxqN+
120 119 rpred φx+pqxqN
121 120 adantr φx+pqxApqxqN
122 simpllr φx+pqxApqx+
123 122 rpred φx+pqxApqx
124 4 ad2antrr φx+pqA
125 108 adantl φx+pqpq
126 124 125 resubcld φx+pqApq
127 126 recnd φx+pqApq
128 127 abscld φx+pqApq
129 128 adantr φx+pqxApqApq
130 rpre x+x
131 130 ad2antlr φx+pqx
132 113 rpcnne0d φx+pqxx0
133 divid xx0xx=1
134 132 133 syl φx+pqxx=1
135 117 nnge1d φx+pq1qN
136 134 135 eqbrtrd φx+pqxxqN
137 131 113 118 136 lediv23d φx+pqxqNx
138 137 adantr φx+pqxApqxqNx
139 simpr φx+pqxApqxApq
140 121 123 129 138 139 letrd φx+pqxApqxqNApq
141 140 ex φx+pqxApqxqNApq
142 141 orim2d φx+pqA=pqxApqA=pqxqNApq
143 142 imim2d φx+pqFpq=0A=pqxApqFpq=0A=pqxqNApq
144 143 ralimdvva φx+pqFpq=0A=pqxApqpqFpq=0A=pqxqNApq
145 144 reximdva φx+pqFpq=0A=pqxApqx+pqFpq=0A=pqxqNApq
146 112 145 mpd φx+pqFpq=0A=pqxqNApq