| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aalioulem2.a |
|
| 2 |
|
aalioulem2.b |
|
| 3 |
|
aalioulem2.c |
|
| 4 |
|
aalioulem2.d |
|
| 5 |
|
1rp |
|
| 6 |
|
snssi |
|
| 7 |
5 6
|
ax-mp |
|
| 8 |
|
ssrab2 |
|
| 9 |
7 8
|
unssi |
|
| 10 |
|
ltso |
|
| 11 |
10
|
a1i |
|
| 12 |
|
snfi |
|
| 13 |
3
|
nnne0d |
|
| 14 |
1
|
eqcomi |
|
| 15 |
|
dgr0 |
|
| 16 |
13 14 15
|
3netr4g |
|
| 17 |
|
fveq2 |
|
| 18 |
17
|
necon3i |
|
| 19 |
16 18
|
syl |
|
| 20 |
|
eqid |
|
| 21 |
20
|
fta1 |
|
| 22 |
2 19 21
|
syl2anc |
|
| 23 |
22
|
simpld |
|
| 24 |
|
abrexfi |
|
| 25 |
23 24
|
syl |
|
| 26 |
|
rabssab |
|
| 27 |
|
ssfi |
|
| 28 |
25 26 27
|
sylancl |
|
| 29 |
|
unfi |
|
| 30 |
12 28 29
|
sylancr |
|
| 31 |
|
1ex |
|
| 32 |
31
|
snid |
|
| 33 |
|
elun1 |
|
| 34 |
|
ne0i |
|
| 35 |
32 33 34
|
mp2b |
|
| 36 |
35
|
a1i |
|
| 37 |
|
rpssre |
|
| 38 |
9 37
|
sstri |
|
| 39 |
38
|
a1i |
|
| 40 |
|
fiinfcl |
|
| 41 |
11 30 36 39 40
|
syl13anc |
|
| 42 |
9 41
|
sselid |
|
| 43 |
|
0re |
|
| 44 |
|
rpge0 |
|
| 45 |
44
|
rgen |
|
| 46 |
|
breq1 |
|
| 47 |
46
|
ralbidv |
|
| 48 |
47
|
rspcev |
|
| 49 |
43 45 48
|
mp2an |
|
| 50 |
|
ssralv |
|
| 51 |
9 50
|
ax-mp |
|
| 52 |
51
|
reximi |
|
| 53 |
49 52
|
ax-mp |
|
| 54 |
|
eqeq1 |
|
| 55 |
54
|
rexbidv |
|
| 56 |
4
|
ad2antrr |
|
| 57 |
|
simplr |
|
| 58 |
56 57
|
resubcld |
|
| 59 |
58
|
recnd |
|
| 60 |
4
|
ad2antrr |
|
| 61 |
60
|
recnd |
|
| 62 |
|
simplr |
|
| 63 |
62
|
recnd |
|
| 64 |
61 63
|
subeq0ad |
|
| 65 |
64
|
necon3abid |
|
| 66 |
65
|
biimprd |
|
| 67 |
66
|
impr |
|
| 68 |
59 67
|
absrpcld |
|
| 69 |
57
|
recnd |
|
| 70 |
|
simprl |
|
| 71 |
|
plyf |
|
| 72 |
2 71
|
syl |
|
| 73 |
72
|
ffnd |
|
| 74 |
73
|
ad2antrr |
|
| 75 |
|
fniniseg |
|
| 76 |
74 75
|
syl |
|
| 77 |
69 70 76
|
mpbir2and |
|
| 78 |
|
eqid |
|
| 79 |
|
oveq2 |
|
| 80 |
79
|
fveq2d |
|
| 81 |
80
|
rspceeqv |
|
| 82 |
77 78 81
|
sylancl |
|
| 83 |
55 68 82
|
elrabd |
|
| 84 |
|
elun2 |
|
| 85 |
83 84
|
syl |
|
| 86 |
|
infrelb |
|
| 87 |
38 53 85 86
|
mp3an12i |
|
| 88 |
87
|
expr |
|
| 89 |
88
|
orrd |
|
| 90 |
89
|
ex |
|
| 91 |
90
|
ralrimiva |
|
| 92 |
|
breq1 |
|
| 93 |
92
|
orbi2d |
|
| 94 |
93
|
imbi2d |
|
| 95 |
94
|
ralbidv |
|
| 96 |
95
|
rspcev |
|
| 97 |
42 91 96
|
syl2anc |
|
| 98 |
|
fveqeq2 |
|
| 99 |
|
eqeq2 |
|
| 100 |
|
oveq2 |
|
| 101 |
100
|
fveq2d |
|
| 102 |
101
|
breq2d |
|
| 103 |
99 102
|
orbi12d |
|
| 104 |
98 103
|
imbi12d |
|
| 105 |
104
|
rspcv |
|
| 106 |
|
znq |
|
| 107 |
|
qre |
|
| 108 |
106 107
|
syl |
|
| 109 |
105 108
|
syl11 |
|
| 110 |
109
|
ralrimivv |
|
| 111 |
110
|
reximi |
|
| 112 |
97 111
|
syl |
|
| 113 |
|
simplr |
|
| 114 |
|
simprr |
|
| 115 |
3
|
nnnn0d |
|
| 116 |
115
|
ad2antrr |
|
| 117 |
114 116
|
nnexpcld |
|
| 118 |
117
|
nnrpd |
|
| 119 |
113 118
|
rpdivcld |
|
| 120 |
119
|
rpred |
|
| 121 |
120
|
adantr |
|
| 122 |
|
simpllr |
|
| 123 |
122
|
rpred |
|
| 124 |
4
|
ad2antrr |
|
| 125 |
108
|
adantl |
|
| 126 |
124 125
|
resubcld |
|
| 127 |
126
|
recnd |
|
| 128 |
127
|
abscld |
|
| 129 |
128
|
adantr |
|
| 130 |
|
rpre |
|
| 131 |
130
|
ad2antlr |
|
| 132 |
113
|
rpcnne0d |
|
| 133 |
|
divid |
|
| 134 |
132 133
|
syl |
|
| 135 |
117
|
nnge1d |
|
| 136 |
134 135
|
eqbrtrd |
|
| 137 |
131 113 118 136
|
lediv23d |
|
| 138 |
137
|
adantr |
|
| 139 |
|
simpr |
|
| 140 |
121 123 129 138 139
|
letrd |
|
| 141 |
140
|
ex |
|
| 142 |
141
|
orim2d |
|
| 143 |
142
|
imim2d |
|
| 144 |
143
|
ralimdvva |
|
| 145 |
144
|
reximdva |
|
| 146 |
112 145
|
mpd |
|