Metamath Proof Explorer


Theorem ablfacrp

Description: A finite abelian group whose order factors into relatively prime integers, itself "factors" into two subgroups K , L that have trivial intersection and whose product is the whole group. Lemma 6.1C.2 of Shapiro, p. 199. (Contributed by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses ablfacrp.b B=BaseG
ablfacrp.o O=odG
ablfacrp.k K=xB|OxM
ablfacrp.l L=xB|OxN
ablfacrp.g φGAbel
ablfacrp.m φM
ablfacrp.n φN
ablfacrp.1 φMgcdN=1
ablfacrp.2 φB= M N
ablfacrp.z 0˙=0G
ablfacrp.s ˙=LSSumG
Assertion ablfacrp φKL=0˙K˙L=B

Proof

Step Hyp Ref Expression
1 ablfacrp.b B=BaseG
2 ablfacrp.o O=odG
3 ablfacrp.k K=xB|OxM
4 ablfacrp.l L=xB|OxN
5 ablfacrp.g φGAbel
6 ablfacrp.m φM
7 ablfacrp.n φN
8 ablfacrp.1 φMgcdN=1
9 ablfacrp.2 φB= M N
10 ablfacrp.z 0˙=0G
11 ablfacrp.s ˙=LSSumG
12 3 4 ineq12i KL=xB|OxMxB|OxN
13 inrab xB|OxMxB|OxN=xB|OxMOxN
14 12 13 eqtri KL=xB|OxMOxN
15 1 2 odcl xBOx0
16 15 adantl φxBOx0
17 16 nn0zd φxBOx
18 6 nnzd φM
19 18 adantr φxBM
20 7 nnzd φN
21 20 adantr φxBN
22 dvdsgcd OxMNOxMOxNOxMgcdN
23 17 19 21 22 syl3anc φxBOxMOxNOxMgcdN
24 23 3impia φxBOxMOxNOxMgcdN
25 8 3ad2ant1 φxBOxMOxNMgcdN=1
26 24 25 breqtrd φxBOxMOxNOx1
27 simp2 φxBOxMOxNxB
28 dvds1 Ox0Ox1Ox=1
29 27 15 28 3syl φxBOxMOxNOx1Ox=1
30 26 29 mpbid φxBOxMOxNOx=1
31 ablgrp GAbelGGrp
32 5 31 syl φGGrp
33 32 3ad2ant1 φxBOxMOxNGGrp
34 2 10 1 odeq1 GGrpxBOx=1x=0˙
35 33 27 34 syl2anc φxBOxMOxNOx=1x=0˙
36 30 35 mpbid φxBOxMOxNx=0˙
37 velsn x0˙x=0˙
38 36 37 sylibr φxBOxMOxNx0˙
39 38 rabssdv φxB|OxMOxN0˙
40 14 39 eqsstrid φKL0˙
41 2 1 oddvdssubg GAbelMxB|OxMSubGrpG
42 5 18 41 syl2anc φxB|OxMSubGrpG
43 3 42 eqeltrid φKSubGrpG
44 10 subg0cl KSubGrpG0˙K
45 43 44 syl φ0˙K
46 2 1 oddvdssubg GAbelNxB|OxNSubGrpG
47 5 20 46 syl2anc φxB|OxNSubGrpG
48 4 47 eqeltrid φLSubGrpG
49 10 subg0cl LSubGrpG0˙L
50 48 49 syl φ0˙L
51 45 50 elind φ0˙KL
52 51 snssd φ0˙KL
53 40 52 eqssd φKL=0˙
54 11 lsmsubg2 GAbelKSubGrpGLSubGrpGK˙LSubGrpG
55 5 43 48 54 syl3anc φK˙LSubGrpG
56 1 subgss K˙LSubGrpGK˙LB
57 55 56 syl φK˙LB
58 eqid G=G
59 1 58 mulg1 gB1Gg=g
60 59 adantl φgB1Gg=g
61 bezout MNabMgcdN=Ma+Nb
62 18 20 61 syl2anc φabMgcdN=Ma+Nb
63 62 adantr φgBabMgcdN=Ma+Nb
64 8 ad2antrr φgBabMgcdN=1
65 64 eqeq1d φgBabMgcdN=Ma+Nb1=Ma+Nb
66 18 ad2antrr φgBabM
67 simprl φgBaba
68 66 67 zmulcld φgBabMa
69 68 zcnd φgBabMa
70 20 ad2antrr φgBabN
71 simprr φgBabb
72 70 71 zmulcld φgBabNb
73 72 zcnd φgBabNb
74 69 73 addcomd φgBabMa+Nb=Nb+Ma
75 74 oveq1d φgBabMa+NbGg=Nb+MaGg
76 32 ad2antrr φgBabGGrp
77 simplr φgBabgB
78 eqid +G=+G
79 1 58 78 mulgdir GGrpNbMagBNb+MaGg=NbGg+GMaGg
80 76 72 68 77 79 syl13anc φgBabNb+MaGg=NbGg+GMaGg
81 75 80 eqtrd φgBabMa+NbGg=NbGg+GMaGg
82 43 ad2antrr φgBabKSubGrpG
83 48 ad2antrr φgBabLSubGrpG
84 1 58 mulgcl GGrpNbgBNbGgB
85 76 72 77 84 syl3anc φgBabNbGgB
86 1 2 odcl gBOg0
87 86 ad2antlr φgBabOg0
88 87 nn0zd φgBabOg
89 66 70 zmulcld φgBab M N
90 6 7 nnmulcld φ M N
91 90 nnnn0d φ M N0
92 9 91 eqeltrd φB0
93 1 fvexi BV
94 hashclb BVBFinB0
95 93 94 ax-mp BFinB0
96 92 95 sylibr φBFin
97 96 ad2antrr φgBabBFin
98 1 2 oddvds2 GGrpBFingBOgB
99 76 97 77 98 syl3anc φgBabOgB
100 9 ad2antrr φgBabB= M N
101 99 100 breqtrd φgBabOg M N
102 88 89 71 101 dvdsmultr1d φgBabOg M Nb
103 66 zcnd φgBabM
104 70 zcnd φgBabN
105 71 zcnd φgBabb
106 103 104 105 mulassd φgBab M Nb=MNb
107 102 106 breqtrd φgBabOgMNb
108 1 2 58 odmulgid GGrpgBNbMONbGgMOgMNb
109 76 77 72 66 108 syl31anc φgBabONbGgMOgMNb
110 107 109 mpbird φgBabONbGgM
111 fveq2 x=NbGgOx=ONbGg
112 111 breq1d x=NbGgOxMONbGgM
113 112 3 elrab2 NbGgKNbGgBONbGgM
114 85 110 113 sylanbrc φgBabNbGgK
115 1 58 mulgcl GGrpMagBMaGgB
116 76 68 77 115 syl3anc φgBabMaGgB
117 88 89 67 101 dvdsmultr1d φgBabOg M Na
118 zcn aa
119 118 ad2antrl φgBaba
120 mulass MNa M Na=MNa
121 mul12 MNaMNa=NMa
122 120 121 eqtrd MNa M Na=NMa
123 103 104 119 122 syl3anc φgBab M Na=NMa
124 117 123 breqtrd φgBabOgNMa
125 1 2 58 odmulgid GGrpgBMaNOMaGgNOgNMa
126 76 77 68 70 125 syl31anc φgBabOMaGgNOgNMa
127 124 126 mpbird φgBabOMaGgN
128 fveq2 x=MaGgOx=OMaGg
129 128 breq1d x=MaGgOxNOMaGgN
130 129 4 elrab2 MaGgLMaGgBOMaGgN
131 116 127 130 sylanbrc φgBabMaGgL
132 78 11 lsmelvali KSubGrpGLSubGrpGNbGgKMaGgLNbGg+GMaGgK˙L
133 82 83 114 131 132 syl22anc φgBabNbGg+GMaGgK˙L
134 81 133 eqeltrd φgBabMa+NbGgK˙L
135 oveq1 1=Ma+Nb1Gg=Ma+NbGg
136 135 eleq1d 1=Ma+Nb1GgK˙LMa+NbGgK˙L
137 134 136 syl5ibrcom φgBab1=Ma+Nb1GgK˙L
138 65 137 sylbid φgBabMgcdN=Ma+Nb1GgK˙L
139 138 rexlimdvva φgBabMgcdN=Ma+Nb1GgK˙L
140 63 139 mpd φgB1GgK˙L
141 60 140 eqeltrrd φgBgK˙L
142 57 141 eqelssd φK˙L=B
143 53 142 jca φKL=0˙K˙L=B