Metamath Proof Explorer


Theorem catciso

Description: A functor is an isomorphism of categories if and only if it is full and faithful, and is a bijection on the objects. Remark 3.28(2) in Adamek p. 34. (Contributed by Mario Carneiro, 29-Jan-2017)

Ref Expression
Hypotheses catciso.c C=CatCatU
catciso.b B=BaseC
catciso.r R=BaseX
catciso.s S=BaseY
catciso.u φUV
catciso.x φXB
catciso.y φYB
catciso.i I=IsoC
Assertion catciso φFXIYFXFullYXFaithY1stF:R1-1 ontoS

Proof

Step Hyp Ref Expression
1 catciso.c C=CatCatU
2 catciso.b B=BaseC
3 catciso.r R=BaseX
4 catciso.s S=BaseY
5 catciso.u φUV
6 catciso.x φXB
7 catciso.y φYB
8 catciso.i I=IsoC
9 relfunc RelXFuncY
10 eqid InvC=InvC
11 1 catccat UVCCat
12 5 11 syl φCCat
13 2 10 12 6 7 8 isoval φXIY=domXInvCY
14 13 eleq2d φFXIYFdomXInvCY
15 14 biimpa φFXIYFdomXInvCY
16 12 adantr φFXIYCCat
17 6 adantr φFXIYXB
18 7 adantr φFXIYYB
19 2 10 16 17 18 invfun φFXIYFunXInvCY
20 funfvbrb FunXInvCYFdomXInvCYFXInvCYXInvCYF
21 19 20 syl φFXIYFdomXInvCYFXInvCYXInvCYF
22 15 21 mpbid φFXIYFXInvCYXInvCYF
23 eqid SectC=SectC
24 2 10 16 17 18 23 isinv φFXIYFXInvCYXInvCYFFXSectCYXInvCYFXInvCYFYSectCXF
25 22 24 mpbid φFXIYFXSectCYXInvCYFXInvCYFYSectCXF
26 25 simpld φFXIYFXSectCYXInvCYF
27 eqid HomC=HomC
28 eqid compC=compC
29 eqid IdC=IdC
30 2 27 28 29 23 16 17 18 issect φFXIYFXSectCYXInvCYFFXHomCYXInvCYFYHomCXXInvCYFXYcompCXF=IdCX
31 26 30 mpbid φFXIYFXHomCYXInvCYFYHomCXXInvCYFXYcompCXF=IdCX
32 31 simp1d φFXIYFXHomCY
33 1 2 5 27 6 7 catchom φXHomCY=XFuncY
34 33 adantr φFXIYXHomCY=XFuncY
35 32 34 eleqtrd φFXIYFXFuncY
36 1st2nd RelXFuncYFXFuncYF=1stF2ndF
37 9 35 36 sylancr φFXIYF=1stF2ndF
38 1st2ndbr RelXFuncYFXFuncY1stFXFuncY2ndF
39 9 35 38 sylancr φFXIY1stFXFuncY2ndF
40 eqid HomX=HomX
41 eqid HomY=HomY
42 39 adantr φFXIYxRyR1stFXFuncY2ndF
43 simprl φFXIYxRyRxR
44 simprr φFXIYxRyRyR
45 3 40 41 42 43 44 funcf2 φFXIYxRyRx2ndFy:xHomXy1stFxHomY1stFy
46 relfunc RelYFuncX
47 31 simp2d φFXIYXInvCYFYHomCX
48 1 2 5 27 7 6 catchom φYHomCX=YFuncX
49 48 adantr φFXIYYHomCX=YFuncX
50 47 49 eleqtrd φFXIYXInvCYFYFuncX
51 1st2ndbr RelYFuncXXInvCYFYFuncX1stXInvCYFYFuncX2ndXInvCYF
52 46 50 51 sylancr φFXIY1stXInvCYFYFuncX2ndXInvCYF
53 52 adantr φFXIYxRyR1stXInvCYFYFuncX2ndXInvCYF
54 3 4 42 funcf1 φFXIYxRyR1stF:RS
55 54 43 ffvelcdmd φFXIYxRyR1stFxS
56 54 44 ffvelcdmd φFXIYxRyR1stFyS
57 4 41 40 53 55 56 funcf2 φFXIYxRyR1stFx2ndXInvCYF1stFy:1stFxHomY1stFy1stXInvCYF1stFxHomX1stXInvCYF1stFy
58 31 simp3d φFXIYXInvCYFXYcompCXF=IdCX
59 5 adantr φFXIYUV
60 1 2 59 28 17 18 17 35 50 catcco φFXIYXInvCYFXYcompCXF=XInvCYFfuncF
61 eqid idfuncX=idfuncX
62 1 2 29 61 5 6 catcid φIdCX=idfuncX
63 62 adantr φFXIYIdCX=idfuncX
64 58 60 63 3eqtr3d φFXIYXInvCYFfuncF=idfuncX
65 64 adantr φFXIYxRyRXInvCYFfuncF=idfuncX
66 65 fveq2d φFXIYxRyR1stXInvCYFfuncF=1stidfuncX
67 66 fveq1d φFXIYxRyR1stXInvCYFfuncFx=1stidfuncXx
68 35 adantr φFXIYxRyRFXFuncY
69 50 adantr φFXIYxRyRXInvCYFYFuncX
70 3 68 69 43 cofu1 φFXIYxRyR1stXInvCYFfuncFx=1stXInvCYF1stFx
71 1 2 5 catcbas φB=UCat
72 inss2 UCatCat
73 71 72 eqsstrdi φBCat
74 73 6 sseldd φXCat
75 74 ad2antrr φFXIYxRyRXCat
76 61 3 75 43 idfu1 φFXIYxRyR1stidfuncXx=x
77 67 70 76 3eqtr3d φFXIYxRyR1stXInvCYF1stFx=x
78 66 fveq1d φFXIYxRyR1stXInvCYFfuncFy=1stidfuncXy
79 3 68 69 44 cofu1 φFXIYxRyR1stXInvCYFfuncFy=1stXInvCYF1stFy
80 61 3 75 44 idfu1 φFXIYxRyR1stidfuncXy=y
81 78 79 80 3eqtr3d φFXIYxRyR1stXInvCYF1stFy=y
82 77 81 oveq12d φFXIYxRyR1stXInvCYF1stFxHomX1stXInvCYF1stFy=xHomXy
83 82 feq3d φFXIYxRyR1stFx2ndXInvCYF1stFy:1stFxHomY1stFy1stXInvCYF1stFxHomX1stXInvCYF1stFy1stFx2ndXInvCYF1stFy:1stFxHomY1stFyxHomXy
84 57 83 mpbid φFXIYxRyR1stFx2ndXInvCYF1stFy:1stFxHomY1stFyxHomXy
85 65 fveq2d φFXIYxRyR2ndXInvCYFfuncF=2ndidfuncX
86 85 oveqd φFXIYxRyRx2ndXInvCYFfuncFy=x2ndidfuncXy
87 3 68 69 43 44 cofu2nd φFXIYxRyRx2ndXInvCYFfuncFy=1stFx2ndXInvCYF1stFyx2ndFy
88 61 3 75 40 43 44 idfu2nd φFXIYxRyRx2ndidfuncXy=IxHomXy
89 86 87 88 3eqtr3d φFXIYxRyR1stFx2ndXInvCYF1stFyx2ndFy=IxHomXy
90 25 simprd φFXIYXInvCYFYSectCXF
91 2 27 28 29 23 16 18 17 issect φFXIYXInvCYFYSectCXFXInvCYFYHomCXFXHomCYFYXcompCYXInvCYF=IdCY
92 90 91 mpbid φFXIYXInvCYFYHomCXFXHomCYFYXcompCYXInvCYF=IdCY
93 92 simp3d φFXIYFYXcompCYXInvCYF=IdCY
94 1 2 59 28 18 17 18 50 35 catcco φFXIYFYXcompCYXInvCYF=FfuncXInvCYF
95 eqid idfuncY=idfuncY
96 1 2 29 95 5 7 catcid φIdCY=idfuncY
97 96 adantr φFXIYIdCY=idfuncY
98 93 94 97 3eqtr3d φFXIYFfuncXInvCYF=idfuncY
99 98 adantr φFXIYxRyRFfuncXInvCYF=idfuncY
100 99 fveq2d φFXIYxRyR2ndFfuncXInvCYF=2ndidfuncY
101 100 oveqd φFXIYxRyR1stFx2ndFfuncXInvCYF1stFy=1stFx2ndidfuncY1stFy
102 4 69 68 55 56 cofu2nd φFXIYxRyR1stFx2ndFfuncXInvCYF1stFy=1stXInvCYF1stFx2ndF1stXInvCYF1stFy1stFx2ndXInvCYF1stFy
103 77 81 oveq12d φFXIYxRyR1stXInvCYF1stFx2ndF1stXInvCYF1stFy=x2ndFy
104 103 coeq1d φFXIYxRyR1stXInvCYF1stFx2ndF1stXInvCYF1stFy1stFx2ndXInvCYF1stFy=x2ndFy1stFx2ndXInvCYF1stFy
105 102 104 eqtrd φFXIYxRyR1stFx2ndFfuncXInvCYF1stFy=x2ndFy1stFx2ndXInvCYF1stFy
106 73 ad2antrr φFXIYxRyRBCat
107 7 ad2antrr φFXIYxRyRYB
108 106 107 sseldd φFXIYxRyRYCat
109 95 4 108 41 55 56 idfu2nd φFXIYxRyR1stFx2ndidfuncY1stFy=I1stFxHomY1stFy
110 101 105 109 3eqtr3d φFXIYxRyRx2ndFy1stFx2ndXInvCYF1stFy=I1stFxHomY1stFy
111 45 84 89 110 fcof1od φFXIYxRyRx2ndFy:xHomXy1-1 onto1stFxHomY1stFy
112 111 ralrimivva φFXIYxRyRx2ndFy:xHomXy1-1 onto1stFxHomY1stFy
113 3 40 41 isffth2 1stFXFullYXFaithY2ndF1stFXFuncY2ndFxRyRx2ndFy:xHomXy1-1 onto1stFxHomY1stFy
114 39 112 113 sylanbrc φFXIY1stFXFullYXFaithY2ndF
115 df-br 1stFXFullYXFaithY2ndF1stF2ndFXFullYXFaithY
116 114 115 sylib φFXIY1stF2ndFXFullYXFaithY
117 37 116 eqeltrd φFXIYFXFullYXFaithY
118 3 4 39 funcf1 φFXIY1stF:RS
119 4 3 52 funcf1 φFXIY1stXInvCYF:SR
120 64 fveq2d φFXIY1stXInvCYFfuncF=1stidfuncX
121 3 35 50 cofu1st φFXIY1stXInvCYFfuncF=1stXInvCYF1stF
122 74 adantr φFXIYXCat
123 61 3 122 idfu1st φFXIY1stidfuncX=IR
124 120 121 123 3eqtr3d φFXIY1stXInvCYF1stF=IR
125 98 fveq2d φFXIY1stFfuncXInvCYF=1stidfuncY
126 4 50 35 cofu1st φFXIY1stFfuncXInvCYF=1stF1stXInvCYF
127 73 7 sseldd φYCat
128 127 adantr φFXIYYCat
129 95 4 128 idfu1st φFXIY1stidfuncY=IS
130 125 126 129 3eqtr3d φFXIY1stF1stXInvCYF=IS
131 118 119 124 130 fcof1od φFXIY1stF:R1-1 ontoS
132 117 131 jca φFXIYFXFullYXFaithY1stF:R1-1 ontoS
133 12 adantr φFXFullYXFaithY1stF:R1-1 ontoSCCat
134 6 adantr φFXFullYXFaithY1stF:R1-1 ontoSXB
135 7 adantr φFXFullYXFaithY1stF:R1-1 ontoSYB
136 inss1 XFullYXFaithYXFullY
137 fullfunc XFullYXFuncY
138 136 137 sstri XFullYXFaithYXFuncY
139 simprl φFXFullYXFaithY1stF:R1-1 ontoSFXFullYXFaithY
140 138 139 sselid φFXFullYXFaithY1stF:R1-1 ontoSFXFuncY
141 9 140 36 sylancr φFXFullYXFaithY1stF:R1-1 ontoSF=1stF2ndF
142 5 adantr φFXFullYXFaithY1stF:R1-1 ontoSUV
143 eqid xS,yS1stF-1x2ndF1stF-1y-1=xS,yS1stF-1x2ndF1stF-1y-1
144 141 139 eqeltrrd φFXFullYXFaithY1stF:R1-1 ontoS1stF2ndFXFullYXFaithY
145 144 115 sylibr φFXFullYXFaithY1stF:R1-1 ontoS1stFXFullYXFaithY2ndF
146 simprr φFXFullYXFaithY1stF:R1-1 ontoS1stF:R1-1 ontoS
147 1 2 3 4 142 134 135 10 143 145 146 catcisolem φFXFullYXFaithY1stF:R1-1 ontoS1stF2ndFXInvCY1stF-1xS,yS1stF-1x2ndF1stF-1y-1
148 141 147 eqbrtrd φFXFullYXFaithY1stF:R1-1 ontoSFXInvCY1stF-1xS,yS1stF-1x2ndF1stF-1y-1
149 2 10 133 134 135 8 148 inviso1 φFXFullYXFaithY1stF:R1-1 ontoSFXIY
150 132 149 impbida φFXIYFXFullYXFaithY1stF:R1-1 ontoS