Metamath Proof Explorer


Theorem chcoeffeqlem

Description: Lemma for chcoeffeq . (Contributed by AV, 21-Nov-2019) (Proof shortened by AV, 7-Dec-2019) (Revised by AV, 15-Dec-2019)

Ref Expression
Hypotheses chcoeffeq.a A=NMatR
chcoeffeq.b B=BaseA
chcoeffeq.p P=Poly1R
chcoeffeq.y Y=NMatP
chcoeffeq.r ×˙=Y
chcoeffeq.s -˙=-Y
chcoeffeq.0 0˙=0Y
chcoeffeq.t T=NmatToPolyMatR
chcoeffeq.c C=NCharPlyMatR
chcoeffeq.k K=CM
chcoeffeq.g G=n0ifn=00˙-˙TM×˙Tb0ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙Tbn
chcoeffeq.w W=BaseY
chcoeffeq.1 1˙=1A
chcoeffeq.m ˙=A
chcoeffeq.u U=NcPolyMatToMatR
Assertion chcoeffeqlem NFinRCRingMBsbB0sPoly1An0UGnPoly1AnmulGrpPoly1Avar1A=Poly1An0coe1Kn˙1˙Poly1AnmulGrpPoly1Avar1An0UGn=coe1Kn˙1˙

Proof

Step Hyp Ref Expression
1 chcoeffeq.a A=NMatR
2 chcoeffeq.b B=BaseA
3 chcoeffeq.p P=Poly1R
4 chcoeffeq.y Y=NMatP
5 chcoeffeq.r ×˙=Y
6 chcoeffeq.s -˙=-Y
7 chcoeffeq.0 0˙=0Y
8 chcoeffeq.t T=NmatToPolyMatR
9 chcoeffeq.c C=NCharPlyMatR
10 chcoeffeq.k K=CM
11 chcoeffeq.g G=n0ifn=00˙-˙TM×˙Tb0ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙Tbn
12 chcoeffeq.w W=BaseY
13 chcoeffeq.1 1˙=1A
14 chcoeffeq.m ˙=A
15 chcoeffeq.u U=NcPolyMatToMatR
16 eqid Poly1A=Poly1A
17 eqid var1A=var1A
18 eqid mulGrpPoly1A=mulGrpPoly1A
19 crngring RCRingRRing
20 1 matring NFinRRingARing
21 19 20 sylan2 NFinRCRingARing
22 21 3adant3 NFinRCRingMBARing
23 22 adantr NFinRCRingMBsbB0sARing
24 eqid Poly1A=Poly1A
25 eqid 0A=0A
26 eqid NConstPolyMatR=NConstPolyMatR
27 eqid Y=Y
28 eqid 1Y=1Y
29 eqid var1R=var1R
30 eqid var1RY1Y-˙TM=var1RY1Y-˙TM
31 eqid NmaAdjuP=NmaAdjuP
32 1 2 3 4 8 5 6 7 11 26 27 28 29 30 31 12 16 17 24 18 15 cpmadumatpolylem1 NFinRCRingMBsbB0sUGB0
33 32 anasss NFinRCRingMBsbB0sUGB0
34 1 2 3 4 5 6 7 8 11 26 chfacfisfcpmat NFinRRingMBsbB0sG:0NConstPolyMatR
35 19 34 syl3anl2 NFinRCRingMBsbB0sG:0NConstPolyMatR
36 35 adantr NFinRCRingMBsbB0sUGB0G:0NConstPolyMatR
37 fvco3 G:0NConstPolyMatRl0UGl=UGl
38 37 eqcomd G:0NConstPolyMatRl0UGl=UGl
39 36 38 sylan NFinRCRingMBsbB0sUGB0l0UGl=UGl
40 elmapi UGB0UG:0B
41 40 adantl NFinRCRingMBsbB0sUGB0UG:0B
42 41 ffvelcdmda NFinRCRingMBsbB0sUGB0l0UGlB
43 39 42 eqeltrd NFinRCRingMBsbB0sUGB0l0UGlB
44 43 ralrimiva NFinRCRingMBsbB0sUGB0l0UGlB
45 33 44 mpdan NFinRCRingMBsbB0sl0UGlB
46 19 anim2i NFinRCRingNFinRRing
47 46 3adant3 NFinRCRingMBNFinRRing
48 47 adantr NFinRCRingMBsbB0sNFinRRing
49 1 2 26 15 cpm2mf NFinRRingU:NConstPolyMatRB
50 48 49 syl NFinRCRingMBsbB0sU:NConstPolyMatRB
51 fcompt U:NConstPolyMatRBG:0NConstPolyMatRUG=l0UGl
52 50 35 51 syl2anc NFinRCRingMBsbB0sUG=l0UGl
53 1 2 3 4 8 5 6 7 11 26 27 28 29 30 31 12 16 17 24 18 15 cpmadumatpolylem2 NFinRCRingMBsbB0sfinSupp0AUG
54 53 anasss NFinRCRingMBsbB0sfinSupp0AUG
55 52 54 eqbrtrrd NFinRCRingMBsbB0sfinSupp0Al0UGl
56 simpll1 NFinRCRingMBsbB0sl0NFin
57 19 3ad2ant2 NFinRCRingMBRRing
58 57 ad2antrr NFinRCRingMBsbB0sl0RRing
59 eqid BaseP=BaseP
60 9 1 2 3 59 chpmatply1 NFinRCRingMBCMBaseP
61 10 60 eqeltrid NFinRCRingMBKBaseP
62 eqid coe1K=coe1K
63 eqid BaseR=BaseR
64 62 59 3 63 coe1fvalcl KBasePl0coe1KlBaseR
65 61 64 sylan NFinRCRingMBl0coe1KlBaseR
66 65 adantlr NFinRCRingMBsbB0sl0coe1KlBaseR
67 2 13 ringidcl ARing1˙B
68 22 67 syl NFinRCRingMB1˙B
69 68 ad2antrr NFinRCRingMBsbB0sl01˙B
70 63 1 2 14 matvscl NFinRRingcoe1KlBaseR1˙Bcoe1Kl˙1˙B
71 56 58 66 69 70 syl22anc NFinRCRingMBsbB0sl0coe1Kl˙1˙B
72 71 ralrimiva NFinRCRingMBsbB0sl0coe1Kl˙1˙B
73 nn0ex 0V
74 73 a1i NFinRCRingMBsbB0s0V
75 1 matlmod NFinRRingALMod
76 19 75 sylan2 NFinRCRingALMod
77 76 3adant3 NFinRCRingMBALMod
78 77 adantr NFinRCRingMBsbB0sALMod
79 eqidd NFinRCRingMBsbB0sScalarA=ScalarA
80 fvexd NFinRCRingMBsbB0sl0coe1KlV
81 eqid 0ScalarA=0ScalarA
82 1 matsca2 NFinRCRingR=ScalarA
83 82 3adant3 NFinRCRingMBR=ScalarA
84 83 57 eqeltrrd NFinRCRingMBScalarARing
85 83 eqcomd NFinRCRingMBScalarA=R
86 85 fveq2d NFinRCRingMBPoly1ScalarA=Poly1R
87 86 3 eqtr4di NFinRCRingMBPoly1ScalarA=P
88 87 fveq2d NFinRCRingMBBasePoly1ScalarA=BaseP
89 61 88 eleqtrrd NFinRCRingMBKBasePoly1ScalarA
90 eqid Poly1ScalarA=Poly1ScalarA
91 eqid BasePoly1ScalarA=BasePoly1ScalarA
92 90 91 81 mptcoe1fsupp ScalarARingKBasePoly1ScalarAfinSupp0ScalarAl0coe1Kl
93 84 89 92 syl2anc NFinRCRingMBfinSupp0ScalarAl0coe1Kl
94 93 adantr NFinRCRingMBsbB0sfinSupp0ScalarAl0coe1Kl
95 74 78 79 2 80 69 25 81 14 94 mptscmfsupp0 NFinRCRingMBsbB0sfinSupp0Al0coe1Kl˙1˙
96 2fveq3 n=lUGn=UGl
97 oveq1 n=lnmulGrpPoly1Avar1A=lmulGrpPoly1Avar1A
98 96 97 oveq12d n=lUGnPoly1AnmulGrpPoly1Avar1A=UGlPoly1AlmulGrpPoly1Avar1A
99 98 cbvmptv n0UGnPoly1AnmulGrpPoly1Avar1A=l0UGlPoly1AlmulGrpPoly1Avar1A
100 99 oveq2i Poly1An0UGnPoly1AnmulGrpPoly1Avar1A=Poly1Al0UGlPoly1AlmulGrpPoly1Avar1A
101 100 a1i NFinRCRingMBsbB0sPoly1An0UGnPoly1AnmulGrpPoly1Avar1A=Poly1Al0UGlPoly1AlmulGrpPoly1Avar1A
102 fveq2 n=lcoe1Kn=coe1Kl
103 102 oveq1d n=lcoe1Kn˙1˙=coe1Kl˙1˙
104 103 97 oveq12d n=lcoe1Kn˙1˙Poly1AnmulGrpPoly1Avar1A=coe1Kl˙1˙Poly1AlmulGrpPoly1Avar1A
105 104 cbvmptv n0coe1Kn˙1˙Poly1AnmulGrpPoly1Avar1A=l0coe1Kl˙1˙Poly1AlmulGrpPoly1Avar1A
106 105 oveq2i Poly1An0coe1Kn˙1˙Poly1AnmulGrpPoly1Avar1A=Poly1Al0coe1Kl˙1˙Poly1AlmulGrpPoly1Avar1A
107 106 a1i NFinRCRingMBsbB0sPoly1An0coe1Kn˙1˙Poly1AnmulGrpPoly1Avar1A=Poly1Al0coe1Kl˙1˙Poly1AlmulGrpPoly1Avar1A
108 16 17 18 23 2 24 25 45 55 72 95 101 107 gsumply1eq NFinRCRingMBsbB0sPoly1An0UGnPoly1AnmulGrpPoly1Avar1A=Poly1An0coe1Kn˙1˙Poly1AnmulGrpPoly1Avar1Al0UGl=coe1Kl˙1˙
109 108 biimpa NFinRCRingMBsbB0sPoly1An0UGnPoly1AnmulGrpPoly1Avar1A=Poly1An0coe1Kn˙1˙Poly1AnmulGrpPoly1Avar1Al0UGl=coe1Kl˙1˙
110 96 103 eqeq12d n=lUGn=coe1Kn˙1˙UGl=coe1Kl˙1˙
111 110 cbvralvw n0UGn=coe1Kn˙1˙l0UGl=coe1Kl˙1˙
112 109 111 sylibr NFinRCRingMBsbB0sPoly1An0UGnPoly1AnmulGrpPoly1Avar1A=Poly1An0coe1Kn˙1˙Poly1AnmulGrpPoly1Avar1An0UGn=coe1Kn˙1˙
113 112 ex NFinRCRingMBsbB0sPoly1An0UGnPoly1AnmulGrpPoly1Avar1A=Poly1An0coe1Kn˙1˙Poly1AnmulGrpPoly1Avar1An0UGn=coe1Kn˙1˙