| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cayhamlem1.a |
|
| 2 |
|
cayhamlem1.b |
|
| 3 |
|
cayhamlem1.p |
|
| 4 |
|
cayhamlem1.y |
|
| 5 |
|
cayhamlem1.r |
|
| 6 |
|
cayhamlem1.s |
|
| 7 |
|
cayhamlem1.0 |
|
| 8 |
|
cayhamlem1.t |
|
| 9 |
|
cayhamlem1.g |
|
| 10 |
|
cayhamlem1.e |
|
| 11 |
|
eluz2 |
|
| 12 |
|
simpll |
|
| 13 |
|
nngt0 |
|
| 14 |
|
nnre |
|
| 15 |
14
|
adantl |
|
| 16 |
|
2rp |
|
| 17 |
16
|
a1i |
|
| 18 |
15 17
|
ltaddrpd |
|
| 19 |
|
0red |
|
| 20 |
|
2re |
|
| 21 |
20
|
a1i |
|
| 22 |
15 21
|
readdcld |
|
| 23 |
|
lttr |
|
| 24 |
19 15 22 23
|
syl3anc |
|
| 25 |
18 24
|
mpan2d |
|
| 26 |
25
|
ex |
|
| 27 |
26
|
com13 |
|
| 28 |
13 27
|
mpcom |
|
| 29 |
28
|
impcom |
|
| 30 |
|
zre |
|
| 31 |
30
|
adantr |
|
| 32 |
|
ltleletr |
|
| 33 |
19 22 31 32
|
syl3anc |
|
| 34 |
29 33
|
mpand |
|
| 35 |
34
|
imp |
|
| 36 |
|
elnn0z |
|
| 37 |
12 35 36
|
sylanbrc |
|
| 38 |
|
nncn |
|
| 39 |
|
add1p1 |
|
| 40 |
38 39
|
syl |
|
| 41 |
40
|
adantl |
|
| 42 |
41
|
eqcomd |
|
| 43 |
42
|
breq1d |
|
| 44 |
|
nnz |
|
| 45 |
44
|
peano2zd |
|
| 46 |
45
|
anim2i |
|
| 47 |
46
|
ancomd |
|
| 48 |
|
zltp1le |
|
| 49 |
48
|
bicomd |
|
| 50 |
47 49
|
syl |
|
| 51 |
43 50
|
bitrd |
|
| 52 |
51
|
biimpa |
|
| 53 |
37 52
|
jca |
|
| 54 |
53
|
ex |
|
| 55 |
54
|
impancom |
|
| 56 |
55
|
3adant1 |
|
| 57 |
56
|
com12 |
|
| 58 |
11 57
|
biimtrid |
|
| 59 |
58
|
adantr |
|
| 60 |
59
|
adantl |
|
| 61 |
|
0red |
|
| 62 |
|
peano2re |
|
| 63 |
14 62
|
syl |
|
| 64 |
63
|
adantr |
|
| 65 |
64
|
adantl |
|
| 66 |
65
|
ad2antrr |
|
| 67 |
|
nn0re |
|
| 68 |
67
|
ad2antlr |
|
| 69 |
|
nnnn0 |
|
| 70 |
69
|
adantr |
|
| 71 |
70
|
ad2antlr |
|
| 72 |
|
nn0p1gt0 |
|
| 73 |
71 72
|
syl |
|
| 74 |
73
|
adantr |
|
| 75 |
|
simpr |
|
| 76 |
61 66 68 74 75
|
lttrd |
|
| 77 |
76
|
gt0ne0d |
|
| 78 |
77
|
neneqd |
|
| 79 |
78
|
adantr |
|
| 80 |
|
eqeq1 |
|
| 81 |
80
|
notbid |
|
| 82 |
81
|
adantl |
|
| 83 |
79 82
|
mpbird |
|
| 84 |
83
|
iffalsed |
|
| 85 |
64
|
ad2antlr |
|
| 86 |
|
ltne |
|
| 87 |
85 86
|
sylan |
|
| 88 |
87
|
neneqd |
|
| 89 |
88
|
adantr |
|
| 90 |
|
eqeq1 |
|
| 91 |
90
|
notbid |
|
| 92 |
91
|
adantl |
|
| 93 |
89 92
|
mpbird |
|
| 94 |
93
|
iffalsed |
|
| 95 |
|
simplr |
|
| 96 |
|
breq2 |
|
| 97 |
96
|
adantl |
|
| 98 |
95 97
|
mpbird |
|
| 99 |
98
|
iftrued |
|
| 100 |
84 94 99
|
3eqtrd |
|
| 101 |
|
simplr |
|
| 102 |
7
|
fvexi |
|
| 103 |
102
|
a1i |
|
| 104 |
9 100 101 103
|
fvmptd2 |
|
| 105 |
104
|
oveq2d |
|
| 106 |
|
crngring |
|
| 107 |
3 4
|
pmatring |
|
| 108 |
106 107
|
sylan2 |
|
| 109 |
108
|
3adant3 |
|
| 110 |
109
|
adantr |
|
| 111 |
110
|
ad2antrr |
|
| 112 |
|
eqid |
|
| 113 |
|
eqid |
|
| 114 |
112 113
|
mgpbas |
|
| 115 |
112
|
ringmgp |
|
| 116 |
109 115
|
syl |
|
| 117 |
116
|
ad2antrr |
|
| 118 |
|
simpr |
|
| 119 |
8 1 2 3 4
|
mat2pmatbas |
|
| 120 |
106 119
|
syl3an2 |
|
| 121 |
120
|
ad2antrr |
|
| 122 |
114 10 117 118 121
|
mulgnn0cld |
|
| 123 |
122
|
adantr |
|
| 124 |
113 5 7
|
ringrz |
|
| 125 |
111 123 124
|
syl2anc |
|
| 126 |
105 125
|
eqtrd |
|
| 127 |
126
|
expl |
|
| 128 |
60 127
|
syld |
|
| 129 |
128
|
3impia |
|