Metamath Proof Explorer


Theorem chfacfpmmul0

Description: The value of the "characteristic factor function" multiplied with a constant polynomial matrix is zero almost always. (Contributed by AV, 23-Nov-2019)

Ref Expression
Hypotheses cayhamlem1.a A=NMatR
cayhamlem1.b B=BaseA
cayhamlem1.p P=Poly1R
cayhamlem1.y Y=NMatP
cayhamlem1.r ×˙=Y
cayhamlem1.s -˙=-Y
cayhamlem1.0 0˙=0Y
cayhamlem1.t T=NmatToPolyMatR
cayhamlem1.g G=n0ifn=00˙-˙TM×˙Tb0ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙Tbn
cayhamlem1.e ×˙=mulGrpY
Assertion chfacfpmmul0 NFinRCRingMBsbB0sKs+2K×˙TM×˙GK=0˙

Proof

Step Hyp Ref Expression
1 cayhamlem1.a A=NMatR
2 cayhamlem1.b B=BaseA
3 cayhamlem1.p P=Poly1R
4 cayhamlem1.y Y=NMatP
5 cayhamlem1.r ×˙=Y
6 cayhamlem1.s -˙=-Y
7 cayhamlem1.0 0˙=0Y
8 cayhamlem1.t T=NmatToPolyMatR
9 cayhamlem1.g G=n0ifn=00˙-˙TM×˙Tb0ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙Tbn
10 cayhamlem1.e ×˙=mulGrpY
11 eluz2 Ks+2s+2Ks+2K
12 simpll Kss+2KK
13 nngt0 s0<s
14 nnre ss
15 14 adantl Kss
16 2rp 2+
17 16 a1i Ks2+
18 15 17 ltaddrpd Kss<s+2
19 0red Ks0
20 2re 2
21 20 a1i Ks2
22 15 21 readdcld Kss+2
23 lttr 0ss+20<ss<s+20<s+2
24 19 15 22 23 syl3anc Ks0<ss<s+20<s+2
25 18 24 mpan2d Ks0<s0<s+2
26 25 ex Ks0<s0<s+2
27 26 com13 0<ssK0<s+2
28 13 27 mpcom sK0<s+2
29 28 impcom Ks0<s+2
30 zre KK
31 30 adantr KsK
32 ltleletr 0s+2K0<s+2s+2K0K
33 19 22 31 32 syl3anc Ks0<s+2s+2K0K
34 29 33 mpand Kss+2K0K
35 34 imp Kss+2K0K
36 elnn0z K0K0K
37 12 35 36 sylanbrc Kss+2KK0
38 nncn ss
39 add1p1 ss+1+1=s+2
40 38 39 syl ss+1+1=s+2
41 40 adantl Kss+1+1=s+2
42 41 eqcomd Kss+2=s+1+1
43 42 breq1d Kss+2Ks+1+1K
44 nnz ss
45 44 peano2zd ss+1
46 45 anim2i KsKs+1
47 46 ancomd Kss+1K
48 zltp1le s+1Ks+1<Ks+1+1K
49 48 bicomd s+1Ks+1+1Ks+1<K
50 47 49 syl Kss+1+1Ks+1<K
51 43 50 bitrd Kss+2Ks+1<K
52 51 biimpa Kss+2Ks+1<K
53 37 52 jca Kss+2KK0s+1<K
54 53 ex Kss+2KK0s+1<K
55 54 impancom Ks+2KsK0s+1<K
56 55 3adant1 s+2Ks+2KsK0s+1<K
57 56 com12 ss+2Ks+2KK0s+1<K
58 11 57 biimtrid sKs+2K0s+1<K
59 58 adantr sbB0sKs+2K0s+1<K
60 59 adantl NFinRCRingMBsbB0sKs+2K0s+1<K
61 0red NFinRCRingMBsbB0sK0s+1<K0
62 peano2re ss+1
63 14 62 syl ss+1
64 63 adantr sbB0ss+1
65 64 adantl NFinRCRingMBsbB0ss+1
66 65 ad2antrr NFinRCRingMBsbB0sK0s+1<Ks+1
67 nn0re K0K
68 67 ad2antlr NFinRCRingMBsbB0sK0s+1<KK
69 nnnn0 ss0
70 69 adantr sbB0ss0
71 70 ad2antlr NFinRCRingMBsbB0sK0s0
72 nn0p1gt0 s00<s+1
73 71 72 syl NFinRCRingMBsbB0sK00<s+1
74 73 adantr NFinRCRingMBsbB0sK0s+1<K0<s+1
75 simpr NFinRCRingMBsbB0sK0s+1<Ks+1<K
76 61 66 68 74 75 lttrd NFinRCRingMBsbB0sK0s+1<K0<K
77 76 gt0ne0d NFinRCRingMBsbB0sK0s+1<KK0
78 77 neneqd NFinRCRingMBsbB0sK0s+1<K¬K=0
79 78 adantr NFinRCRingMBsbB0sK0s+1<Kn=K¬K=0
80 eqeq1 n=Kn=0K=0
81 80 notbid n=K¬n=0¬K=0
82 81 adantl NFinRCRingMBsbB0sK0s+1<Kn=K¬n=0¬K=0
83 79 82 mpbird NFinRCRingMBsbB0sK0s+1<Kn=K¬n=0
84 83 iffalsed NFinRCRingMBsbB0sK0s+1<Kn=Kifn=00˙-˙TM×˙Tb0ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙Tbn=ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙Tbn
85 64 ad2antlr NFinRCRingMBsbB0sK0s+1
86 ltne s+1s+1<KKs+1
87 85 86 sylan NFinRCRingMBsbB0sK0s+1<KKs+1
88 87 neneqd NFinRCRingMBsbB0sK0s+1<K¬K=s+1
89 88 adantr NFinRCRingMBsbB0sK0s+1<Kn=K¬K=s+1
90 eqeq1 n=Kn=s+1K=s+1
91 90 notbid n=K¬n=s+1¬K=s+1
92 91 adantl NFinRCRingMBsbB0sK0s+1<Kn=K¬n=s+1¬K=s+1
93 89 92 mpbird NFinRCRingMBsbB0sK0s+1<Kn=K¬n=s+1
94 93 iffalsed NFinRCRingMBsbB0sK0s+1<Kn=Kifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙Tbn=ifs+1<n0˙Tbn1-˙TM×˙Tbn
95 simplr NFinRCRingMBsbB0sK0s+1<Kn=Ks+1<K
96 breq2 n=Ks+1<ns+1<K
97 96 adantl NFinRCRingMBsbB0sK0s+1<Kn=Ks+1<ns+1<K
98 95 97 mpbird NFinRCRingMBsbB0sK0s+1<Kn=Ks+1<n
99 98 iftrued NFinRCRingMBsbB0sK0s+1<Kn=Kifs+1<n0˙Tbn1-˙TM×˙Tbn=0˙
100 84 94 99 3eqtrd NFinRCRingMBsbB0sK0s+1<Kn=Kifn=00˙-˙TM×˙Tb0ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙Tbn=0˙
101 simplr NFinRCRingMBsbB0sK0s+1<KK0
102 7 fvexi 0˙V
103 102 a1i NFinRCRingMBsbB0sK0s+1<K0˙V
104 9 100 101 103 fvmptd2 NFinRCRingMBsbB0sK0s+1<KGK=0˙
105 104 oveq2d NFinRCRingMBsbB0sK0s+1<KK×˙TM×˙GK=K×˙TM×˙0˙
106 crngring RCRingRRing
107 3 4 pmatring NFinRRingYRing
108 106 107 sylan2 NFinRCRingYRing
109 108 3adant3 NFinRCRingMBYRing
110 109 adantr NFinRCRingMBsbB0sYRing
111 110 ad2antrr NFinRCRingMBsbB0sK0s+1<KYRing
112 eqid mulGrpY=mulGrpY
113 eqid BaseY=BaseY
114 112 113 mgpbas BaseY=BasemulGrpY
115 112 ringmgp YRingmulGrpYMnd
116 109 115 syl NFinRCRingMBmulGrpYMnd
117 116 ad2antrr NFinRCRingMBsbB0sK0mulGrpYMnd
118 simpr NFinRCRingMBsbB0sK0K0
119 8 1 2 3 4 mat2pmatbas NFinRRingMBTMBaseY
120 106 119 syl3an2 NFinRCRingMBTMBaseY
121 120 ad2antrr NFinRCRingMBsbB0sK0TMBaseY
122 114 10 117 118 121 mulgnn0cld NFinRCRingMBsbB0sK0K×˙TMBaseY
123 122 adantr NFinRCRingMBsbB0sK0s+1<KK×˙TMBaseY
124 113 5 7 ringrz YRingK×˙TMBaseYK×˙TM×˙0˙=0˙
125 111 123 124 syl2anc NFinRCRingMBsbB0sK0s+1<KK×˙TM×˙0˙=0˙
126 105 125 eqtrd NFinRCRingMBsbB0sK0s+1<KK×˙TM×˙GK=0˙
127 126 expl NFinRCRingMBsbB0sK0s+1<KK×˙TM×˙GK=0˙
128 60 127 syld NFinRCRingMBsbB0sKs+2K×˙TM×˙GK=0˙
129 128 3impia NFinRCRingMBsbB0sKs+2K×˙TM×˙GK=0˙