Metamath Proof Explorer


Theorem chpscmatgsumbin

Description: The characteristic polynomial of a (nonempty!) scalar matrix, expressed as finite group sum of binomials. (Contributed by AV, 2-Sep-2019)

Ref Expression
Hypotheses chp0mat.c C=NCharPlyMatR
chp0mat.p P=Poly1R
chp0mat.a A=NMatR
chp0mat.x X=var1R
chp0mat.g G=mulGrpP
chp0mat.m ×˙=G
chpscmat.d D=mBaseA|cBaseRiNjNimj=ifi=jc0R
chpscmat.s S=algScP
chpscmat.m -˙=-P
chpscmatgsum.f F=P
chpscmatgsum.h H=mulGrpR
chpscmatgsum.e E=H
chpscmatgsum.i I=invgR
chpscmatgsum.s ·˙=P
Assertion chpscmatgsumbin NFinRCRingMDJNnNnMn=JMJCM=Pl=0N(Nl)FNlEIJMJ·˙l×˙X

Proof

Step Hyp Ref Expression
1 chp0mat.c C=NCharPlyMatR
2 chp0mat.p P=Poly1R
3 chp0mat.a A=NMatR
4 chp0mat.x X=var1R
5 chp0mat.g G=mulGrpP
6 chp0mat.m ×˙=G
7 chpscmat.d D=mBaseA|cBaseRiNjNimj=ifi=jc0R
8 chpscmat.s S=algScP
9 chpscmat.m -˙=-P
10 chpscmatgsum.f F=P
11 chpscmatgsum.h H=mulGrpR
12 chpscmatgsum.e E=H
13 chpscmatgsum.i I=invgR
14 chpscmatgsum.s ·˙=P
15 1 2 3 4 5 6 7 8 9 chpscmat0 NFinRCRingMDJNnNnMn=JMJCM=N×˙X-˙SJMJ
16 crngring RCRingRRing
17 16 adantl NFinRCRingRRing
18 eqid BaseP=BaseP
19 4 2 18 vr1cl RRingXBaseP
20 17 19 syl NFinRCRingXBaseP
21 20 adantr NFinRCRingMDJNnNnMn=JMJXBaseP
22 16 ad2antlr NFinRCRingMDJNnNnMn=JMJRRing
23 eqid ScalarP=ScalarP
24 2 ply1ring RRingPRing
25 2 ply1lmod RRingPLMod
26 eqid BaseScalarP=BaseScalarP
27 8 23 24 25 26 18 asclf RRingS:BaseScalarPBaseP
28 22 27 syl NFinRCRingMDJNnNnMn=JMJS:BaseScalarPBaseP
29 simpr2 NFinRCRingMDJNnNnMn=JMJJN
30 elrabi MmBaseA|cBaseRiNjNimj=ifi=jc0RMBaseA
31 30 a1d MmBaseA|cBaseRiNjNimj=ifi=jc0RNFinRCRingMBaseA
32 31 7 eleq2s MDNFinRCRingMBaseA
33 32 3ad2ant1 MDJNnNnMn=JMJNFinRCRingMBaseA
34 33 impcom NFinRCRingMDJNnNnMn=JMJMBaseA
35 eqid BaseR=BaseR
36 3 35 matecl JNJNMBaseAJMJBaseR
37 29 29 34 36 syl3anc NFinRCRingMDJNnNnMn=JMJJMJBaseR
38 2 ply1sca RCRingR=ScalarP
39 38 adantl NFinRCRingR=ScalarP
40 39 eqcomd NFinRCRingScalarP=R
41 40 adantr NFinRCRingMDJNnNnMn=JMJScalarP=R
42 41 fveq2d NFinRCRingMDJNnNnMn=JMJBaseScalarP=BaseR
43 37 42 eleqtrrd NFinRCRingMDJNnNnMn=JMJJMJBaseScalarP
44 28 43 ffvelcdmd NFinRCRingMDJNnNnMn=JMJSJMJBaseP
45 eqid +P=+P
46 eqid invgP=invgP
47 18 45 46 9 grpsubval XBasePSJMJBasePX-˙SJMJ=X+PinvgPSJMJ
48 21 44 47 syl2anc NFinRCRingMDJNnNnMn=JMJX-˙SJMJ=X+PinvgPSJMJ
49 17 25 syl NFinRCRingPLMod
50 49 adantr NFinRCRingMDJNnNnMn=JMJPLMod
51 17 24 syl NFinRCRingPRing
52 51 adantr NFinRCRingMDJNnNnMn=JMJPRing
53 eqid invgScalarP=invgScalarP
54 8 23 26 53 46 asclinvg PLModPRingJMJBaseScalarPinvgPSJMJ=SinvgScalarPJMJ
55 50 52 43 54 syl3anc NFinRCRingMDJNnNnMn=JMJinvgPSJMJ=SinvgScalarPJMJ
56 39 fveq2d NFinRCRinginvgR=invgScalarP
57 56 adantr NFinRCRingMDJNnNnMn=JMJinvgR=invgScalarP
58 13 57 eqtr2id NFinRCRingMDJNnNnMn=JMJinvgScalarP=I
59 58 fveq1d NFinRCRingMDJNnNnMn=JMJinvgScalarPJMJ=IJMJ
60 59 fveq2d NFinRCRingMDJNnNnMn=JMJSinvgScalarPJMJ=SIJMJ
61 55 60 eqtrd NFinRCRingMDJNnNnMn=JMJinvgPSJMJ=SIJMJ
62 61 oveq2d NFinRCRingMDJNnNnMn=JMJX+PinvgPSJMJ=X+PSIJMJ
63 48 62 eqtrd NFinRCRingMDJNnNnMn=JMJX-˙SJMJ=X+PSIJMJ
64 63 oveq2d NFinRCRingMDJNnNnMn=JMJN×˙X-˙SJMJ=N×˙X+PSIJMJ
65 simplr NFinRCRingMDJNnNnMn=JMJRCRing
66 hashcl NFinN0
67 66 ad2antrr NFinRCRingMDJNnNnMn=JMJN0
68 ringgrp RRingRGrp
69 16 68 syl RCRingRGrp
70 69 ad2antlr NFinRCRingMDJNnNnMn=JMJRGrp
71 35 13 grpinvcl RGrpJMJBaseRIJMJBaseR
72 70 37 71 syl2anc NFinRCRingMDJNnNnMn=JMJIJMJBaseR
73 eqid P=P
74 2 4 45 73 10 5 6 35 8 11 12 lply1binomsc RCRingN0IJMJBaseRN×˙X+PSIJMJ=Pl=0N(Nl)FSNlEIJMJPl×˙X
75 65 67 72 74 syl3anc NFinRCRingMDJNnNnMn=JMJN×˙X+PSIJMJ=Pl=0N(Nl)FSNlEIJMJPl×˙X
76 2 ply1assa RCRingPAssAlg
77 76 adantl NFinRCRingPAssAlg
78 77 ad2antrr NFinRCRingMDJNnNnMn=JMJl0NPAssAlg
79 eqid BaseH=BaseH
80 11 ringmgp RRingHMnd
81 17 80 syl NFinRCRingHMnd
82 81 ad2antrr NFinRCRingMDJNnNnMn=JMJl0NHMnd
83 fznn0sub l0NNl0
84 83 adantl NFinRCRingMDJNnNnMn=JMJl0NNl0
85 11 35 mgpbas BaseR=BaseH
86 72 85 eleqtrdi NFinRCRingMDJNnNnMn=JMJIJMJBaseH
87 86 adantr NFinRCRingMDJNnNnMn=JMJl0NIJMJBaseH
88 79 12 82 84 87 mulgnn0cld NFinRCRingMDJNnNnMn=JMJl0NNlEIJMJBaseH
89 40 fveq2d NFinRCRingBaseScalarP=BaseR
90 89 85 eqtrdi NFinRCRingBaseScalarP=BaseH
91 90 ad2antrr NFinRCRingMDJNnNnMn=JMJl0NBaseScalarP=BaseH
92 88 91 eleqtrrd NFinRCRingMDJNnNnMn=JMJl0NNlEIJMJBaseScalarP
93 5 18 mgpbas BaseP=BaseG
94 5 ringmgp PRingGMnd
95 16 24 94 3syl RCRingGMnd
96 95 ad2antlr NFinRCRingl0NGMnd
97 elfznn0 l0Nl0
98 97 adantl NFinRCRingl0Nl0
99 20 adantr NFinRCRingl0NXBaseP
100 93 6 96 98 99 mulgnn0cld NFinRCRingl0Nl×˙XBaseP
101 100 adantlr NFinRCRingMDJNnNnMn=JMJl0Nl×˙XBaseP
102 8 23 26 18 73 14 asclmul1 PAssAlgNlEIJMJBaseScalarPl×˙XBasePSNlEIJMJPl×˙X=NlEIJMJ·˙l×˙X
103 78 92 101 102 syl3anc NFinRCRingMDJNnNnMn=JMJl0NSNlEIJMJPl×˙X=NlEIJMJ·˙l×˙X
104 103 oveq2d NFinRCRingMDJNnNnMn=JMJl0N(Nl)FSNlEIJMJPl×˙X=(Nl)FNlEIJMJ·˙l×˙X
105 104 mpteq2dva NFinRCRingMDJNnNnMn=JMJl0N(Nl)FSNlEIJMJPl×˙X=l0N(Nl)FNlEIJMJ·˙l×˙X
106 105 oveq2d NFinRCRingMDJNnNnMn=JMJPl=0N(Nl)FSNlEIJMJPl×˙X=Pl=0N(Nl)FNlEIJMJ·˙l×˙X
107 75 106 eqtrd NFinRCRingMDJNnNnMn=JMJN×˙X+PSIJMJ=Pl=0N(Nl)FNlEIJMJ·˙l×˙X
108 15 64 107 3eqtrd NFinRCRingMDJNnNnMn=JMJCM=Pl=0N(Nl)FNlEIJMJ·˙l×˙X