Metamath Proof Explorer


Theorem cvgcmpce

Description: A comparison test for convergence of a complex infinite series. (Contributed by NM, 25-Apr-2005) (Revised by Mario Carneiro, 27-May-2014)

Ref Expression
Hypotheses cvgcmpce.1 Z=M
cvgcmpce.2 φNZ
cvgcmpce.3 φkZFk
cvgcmpce.4 φkZGk
cvgcmpce.5 φseqM+Fdom
cvgcmpce.6 φC
cvgcmpce.7 φkNGkCFk
Assertion cvgcmpce φseqM+Gdom

Proof

Step Hyp Ref Expression
1 cvgcmpce.1 Z=M
2 cvgcmpce.2 φNZ
3 cvgcmpce.3 φkZFk
4 cvgcmpce.4 φkZGk
5 cvgcmpce.5 φseqM+Fdom
6 cvgcmpce.6 φC
7 cvgcmpce.7 φkNGkCFk
8 2 1 eleqtrdi φNM
9 eluzel2 NMM
10 8 9 syl φM
11 1 10 4 serf φseqM+G:Z
12 11 ffvelcdmda φnZseqM+Gn
13 fveq2 m=kFm=Fk
14 13 oveq2d m=kCFm=CFk
15 eqid mZCFm=mZCFm
16 ovex CFkV
17 14 15 16 fvmpt kZmZCFmk=CFk
18 17 adantl φkZmZCFmk=CFk
19 6 adantr φkZC
20 19 3 remulcld φkZCFk
21 18 20 eqeltrd φkZmZCFmk
22 2fveq3 m=kGm=Gk
23 eqid mZGm=mZGm
24 fvex GkV
25 22 23 24 fvmpt kZmZGmk=Gk
26 25 adantl φkZmZGmk=Gk
27 4 abscld φkZGk
28 26 27 eqeltrd φkZmZGmk
29 6 recnd φC
30 climdm seqM+FdomseqM+FseqM+F
31 5 30 sylib φseqM+FseqM+F
32 3 recnd φkZFk
33 1 10 29 31 32 18 isermulc2 φseqM+mZCFmCseqM+F
34 climrel Rel
35 34 releldmi seqM+mZCFmCseqM+FseqM+mZCFmdom
36 33 35 syl φseqM+mZCFmdom
37 1 uztrn2 NZkNkZ
38 2 37 sylan φkNkZ
39 4 absge0d φkZ0Gk
40 39 26 breqtrrd φkZ0mZGmk
41 38 40 syldan φkN0mZGmk
42 38 25 syl φkNmZGmk=Gk
43 38 17 syl φkNmZCFmk=CFk
44 7 42 43 3brtr4d φkNmZGmkmZCFmk
45 1 2 21 28 36 41 44 cvgcmp φseqM+mZGmdom
46 1 climcau MseqM+mZGmdomx+jZnjseqM+mZGmnseqM+mZGmj<x
47 10 45 46 syl2anc φx+jZnjseqM+mZGmnseqM+mZGmj<x
48 1 10 28 serfre φseqM+mZGm:Z
49 48 ad2antrr φx+jZnjseqM+mZGm:Z
50 1 uztrn2 jZnjnZ
51 50 adantl φx+jZnjnZ
52 49 51 ffvelcdmd φx+jZnjseqM+mZGmn
53 simprl φx+jZnjjZ
54 49 53 ffvelcdmd φx+jZnjseqM+mZGmj
55 52 54 resubcld φx+jZnjseqM+mZGmnseqM+mZGmj
56 0red φx+jZnj0
57 11 ad2antrr φx+jZnjseqM+G:Z
58 57 51 ffvelcdmd φx+jZnjseqM+Gn
59 57 53 ffvelcdmd φx+jZnjseqM+Gj
60 58 59 subcld φx+jZnjseqM+GnseqM+Gj
61 60 abscld φx+jZnjseqM+GnseqM+Gj
62 60 absge0d φx+jZnj0seqM+GnseqM+Gj
63 fzfid φx+jZnjMnFin
64 difss MnMjMn
65 ssfi MnFinMnMjMnMnMjFin
66 63 64 65 sylancl φx+jZnjMnMjFin
67 eldifi kMnMjkMn
68 simpll φx+jZnjφ
69 elfzuz kMnkM
70 69 1 eleqtrrdi kMnkZ
71 68 70 4 syl2an φx+jZnjkMnGk
72 67 71 sylan2 φx+jZnjkMnMjGk
73 66 72 fsumabs φx+jZnjkMnMjGkkMnMjGk
74 eqidd φx+jZnjkMnGk=Gk
75 51 1 eleqtrdi φx+jZnjnM
76 74 75 71 fsumser φx+jZnjk=MnGk=seqM+Gn
77 eqidd φx+jZnjkMjGk=Gk
78 53 1 eleqtrdi φx+jZnjjM
79 elfzuz kMjkM
80 79 1 eleqtrrdi kMjkZ
81 68 80 4 syl2an φx+jZnjkMjGk
82 77 78 81 fsumser φx+jZnjk=MjGk=seqM+Gj
83 76 82 oveq12d φx+jZnjk=MnGkk=MjGk=seqM+GnseqM+Gj
84 fzfid φx+jZnjMjFin
85 84 81 fsumcl φx+jZnjk=MjGk
86 66 72 fsumcl φx+jZnjkMnMjGk
87 disjdif MjMnMj=
88 87 a1i φx+jZnjMjMnMj=
89 undif2 MjMnMj=MjMn
90 fzss2 njMjMn
91 90 ad2antll φx+jZnjMjMn
92 ssequn1 MjMnMjMn=Mn
93 91 92 sylib φx+jZnjMjMn=Mn
94 89 93 eqtr2id φx+jZnjMn=MjMnMj
95 88 94 63 71 fsumsplit φx+jZnjk=MnGk=k=MjGk+kMnMjGk
96 85 86 95 mvrladdd φx+jZnjk=MnGkk=MjGk=kMnMjGk
97 83 96 eqtr3d φx+jZnjseqM+GnseqM+Gj=kMnMjGk
98 97 fveq2d φx+jZnjseqM+GnseqM+Gj=kMnMjGk
99 70 adantl φx+jZnjkMnkZ
100 99 25 syl φx+jZnjkMnmZGmk=Gk
101 abscl GkGk
102 101 recnd GkGk
103 71 102 syl φx+jZnjkMnGk
104 100 75 103 fsumser φx+jZnjk=MnGk=seqM+mZGmn
105 80 adantl φx+jZnjkMjkZ
106 105 25 syl φx+jZnjkMjmZGmk=Gk
107 81 102 syl φx+jZnjkMjGk
108 106 78 107 fsumser φx+jZnjk=MjGk=seqM+mZGmj
109 104 108 oveq12d φx+jZnjk=MnGkk=MjGk=seqM+mZGmnseqM+mZGmj
110 84 107 fsumcl φx+jZnjk=MjGk
111 72 102 syl φx+jZnjkMnMjGk
112 66 111 fsumcl φx+jZnjkMnMjGk
113 88 94 63 103 fsumsplit φx+jZnjk=MnGk=k=MjGk+kMnMjGk
114 110 112 113 mvrladdd φx+jZnjk=MnGkk=MjGk=kMnMjGk
115 109 114 eqtr3d φx+jZnjseqM+mZGmnseqM+mZGmj=kMnMjGk
116 73 98 115 3brtr4d φx+jZnjseqM+GnseqM+GjseqM+mZGmnseqM+mZGmj
117 56 61 55 62 116 letrd φx+jZnj0seqM+mZGmnseqM+mZGmj
118 55 117 absidd φx+jZnjseqM+mZGmnseqM+mZGmj=seqM+mZGmnseqM+mZGmj
119 118 breq1d φx+jZnjseqM+mZGmnseqM+mZGmj<xseqM+mZGmnseqM+mZGmj<x
120 rpre x+x
121 120 ad2antlr φx+jZnjx
122 lelttr seqM+GnseqM+GjseqM+mZGmnseqM+mZGmjxseqM+GnseqM+GjseqM+mZGmnseqM+mZGmjseqM+mZGmnseqM+mZGmj<xseqM+GnseqM+Gj<x
123 61 55 121 122 syl3anc φx+jZnjseqM+GnseqM+GjseqM+mZGmnseqM+mZGmjseqM+mZGmnseqM+mZGmj<xseqM+GnseqM+Gj<x
124 116 123 mpand φx+jZnjseqM+mZGmnseqM+mZGmj<xseqM+GnseqM+Gj<x
125 119 124 sylbid φx+jZnjseqM+mZGmnseqM+mZGmj<xseqM+GnseqM+Gj<x
126 125 anassrs φx+jZnjseqM+mZGmnseqM+mZGmj<xseqM+GnseqM+Gj<x
127 126 ralimdva φx+jZnjseqM+mZGmnseqM+mZGmj<xnjseqM+GnseqM+Gj<x
128 127 reximdva φx+jZnjseqM+mZGmnseqM+mZGmj<xjZnjseqM+GnseqM+Gj<x
129 128 ralimdva φx+jZnjseqM+mZGmnseqM+mZGmj<xx+jZnjseqM+GnseqM+Gj<x
130 47 129 mpd φx+jZnjseqM+GnseqM+Gj<x
131 seqex seqM+GV
132 131 a1i φseqM+GV
133 1 12 130 132 caucvg φseqM+Gdom