Metamath Proof Explorer


Theorem cvmlift3lem7

Description: Lemma for cvmlift3 . (Contributed by Mario Carneiro, 9-Jul-2015)

Ref Expression
Hypotheses cvmlift3.b B=C
cvmlift3.y Y=K
cvmlift3.f φFCCovMapJ
cvmlift3.k φKSConn
cvmlift3.l φKN-Locally PConn
cvmlift3.o φOY
cvmlift3.g φGKCnJ
cvmlift3.p φPB
cvmlift3.e φFP=GO
cvmlift3.h H=xYιzB|fIICnKf0=Of1=xιgIICnC|Fg=Gfg0=P1=z
cvmlift3lem7.s S=kJs𝒫C|s=F-1kcsdsccd=FcC𝑡cHomeoJ𝑡k
cvmlift3lem7.1 φGXA
cvmlift3lem7.2 φTSA
cvmlift3lem7.3 φMG-1A
cvmlift3lem7.w W=ιbT|HXb
cvmlift3lem7.7 φK𝑡MPConn
cvmlift3lem7.4 φVK
cvmlift3lem7.5 φVM
cvmlift3lem7.6 φXV
Assertion cvmlift3lem7 φHKCnPCX

Proof

Step Hyp Ref Expression
1 cvmlift3.b B=C
2 cvmlift3.y Y=K
3 cvmlift3.f φFCCovMapJ
4 cvmlift3.k φKSConn
5 cvmlift3.l φKN-Locally PConn
6 cvmlift3.o φOY
7 cvmlift3.g φGKCnJ
8 cvmlift3.p φPB
9 cvmlift3.e φFP=GO
10 cvmlift3.h H=xYιzB|fIICnKf0=Of1=xιgIICnC|Fg=Gfg0=P1=z
11 cvmlift3lem7.s S=kJs𝒫C|s=F-1kcsdsccd=FcC𝑡cHomeoJ𝑡k
12 cvmlift3lem7.1 φGXA
13 cvmlift3lem7.2 φTSA
14 cvmlift3lem7.3 φMG-1A
15 cvmlift3lem7.w W=ιbT|HXb
16 cvmlift3lem7.7 φK𝑡MPConn
17 cvmlift3lem7.4 φVK
18 cvmlift3lem7.5 φVM
19 cvmlift3lem7.6 φXV
20 1 2 3 4 5 6 7 8 9 10 cvmlift3lem3 φH:YB
21 1 2 3 4 5 6 7 8 9 10 cvmlift3lem5 φFH=G
22 21 7 eqeltrd φFHKCnJ
23 sconntop KSConnKTop
24 4 23 syl φKTop
25 cnvimass G-1AdomG
26 eqid J=J
27 2 26 cnf GKCnJG:YJ
28 fdm G:YJdomG=Y
29 7 27 28 3syl φdomG=Y
30 25 29 sseqtrid φG-1AY
31 14 30 sstrd φMY
32 18 19 sseldd φXM
33 31 32 sseldd φXY
34 20 33 ffvelcdmd φHXB
35 fvco3 H:YBXYFHX=FHX
36 20 33 35 syl2anc φFHX=FHX
37 21 fveq1d φFHX=GX
38 36 37 eqtr3d φFHX=GX
39 38 12 eqeltrd φFHXA
40 11 1 15 cvmsiota FCCovMapJTSAHXBFHXAWTHXW
41 3 13 34 39 40 syl13anc φWTHXW
42 eqid HX=HX
43 1 2 3 4 5 6 7 8 9 10 cvmlift3lem4 φXYHX=HXfIICnKf0=Of1=XιgIICnC|Fg=Gfg0=P1=HX
44 42 43 mpbii φXYfIICnKf0=Of1=XιgIICnC|Fg=Gfg0=P1=HX
45 33 44 mpdan φfIICnKf0=Of1=XιgIICnC|Fg=Gfg0=P1=HX
46 45 adantr φyMfIICnKf0=Of1=XιgIICnC|Fg=Gfg0=P1=HX
47 fveq1 f=hf0=h0
48 47 eqeq1d f=hf0=Oh0=O
49 fveq1 f=hf1=h1
50 49 eqeq1d f=hf1=Xh1=X
51 coeq2 f=hGf=Gh
52 51 eqeq2d f=hFg=GfFg=Gh
53 52 anbi1d f=hFg=Gfg0=PFg=Ghg0=P
54 53 riotabidv f=hιgIICnC|Fg=Gfg0=P=ιgIICnC|Fg=Ghg0=P
55 coeq2 a=gFa=Fg
56 55 eqeq1d a=gFa=GhFg=Gh
57 fveq1 a=ga0=g0
58 57 eqeq1d a=ga0=Pg0=P
59 56 58 anbi12d a=gFa=Gha0=PFg=Ghg0=P
60 59 cbvriotavw ιaIICnC|Fa=Gha0=P=ιgIICnC|Fg=Ghg0=P
61 54 60 eqtr4di f=hιgIICnC|Fg=Gfg0=P=ιaIICnC|Fa=Gha0=P
62 61 fveq1d f=hιgIICnC|Fg=Gfg0=P1=ιaIICnC|Fa=Gha0=P1
63 62 eqeq1d f=hιgIICnC|Fg=Gfg0=P1=HXιaIICnC|Fa=Gha0=P1=HX
64 48 50 63 3anbi123d f=hf0=Of1=XιgIICnC|Fg=Gfg0=P1=HXh0=Oh1=XιaIICnC|Fa=Gha0=P1=HX
65 64 cbvrexvw fIICnKf0=Of1=XιgIICnC|Fg=Gfg0=P1=HXhIICnKh0=Oh1=XιaIICnC|Fa=Gha0=P1=HX
66 46 65 sylib φyMhIICnKh0=Oh1=XιaIICnC|Fa=Gha0=P1=HX
67 16 adantr φyMK𝑡MPConn
68 2 restuni KTopMYM=K𝑡M
69 24 31 68 syl2anc φM=K𝑡M
70 32 69 eleqtrd φXK𝑡M
71 70 adantr φyMXK𝑡M
72 69 eleq2d φyMyK𝑡M
73 72 biimpa φyMyK𝑡M
74 eqid K𝑡M=K𝑡M
75 74 pconncn K𝑡MPConnXK𝑡MyK𝑡MnIICnK𝑡Mn0=Xn1=y
76 67 71 73 75 syl3anc φyMnIICnK𝑡Mn0=Xn1=y
77 reeanv hIICnKnIICnK𝑡Mh0=Oh1=XιaIICnC|Fa=Gha0=P1=HXn0=Xn1=yhIICnKh0=Oh1=XιaIICnC|Fa=Gha0=P1=HXnIICnK𝑡Mn0=Xn1=y
78 3 ad3antrrr φyMhIICnKnIICnK𝑡Mh0=Oh1=XιaIICnC|Fa=Gha0=P1=HXn0=Xn1=yFCCovMapJ
79 4 ad3antrrr φyMhIICnKnIICnK𝑡Mh0=Oh1=XιaIICnC|Fa=Gha0=P1=HXn0=Xn1=yKSConn
80 5 ad3antrrr φyMhIICnKnIICnK𝑡Mh0=Oh1=XιaIICnC|Fa=Gha0=P1=HXn0=Xn1=yKN-Locally PConn
81 6 ad3antrrr φyMhIICnKnIICnK𝑡Mh0=Oh1=XιaIICnC|Fa=Gha0=P1=HXn0=Xn1=yOY
82 7 ad3antrrr φyMhIICnKnIICnK𝑡Mh0=Oh1=XιaIICnC|Fa=Gha0=P1=HXn0=Xn1=yGKCnJ
83 8 ad3antrrr φyMhIICnKnIICnK𝑡Mh0=Oh1=XιaIICnC|Fa=Gha0=P1=HXn0=Xn1=yPB
84 9 ad3antrrr φyMhIICnKnIICnK𝑡Mh0=Oh1=XιaIICnC|Fa=Gha0=P1=HXn0=Xn1=yFP=GO
85 12 ad3antrrr φyMhIICnKnIICnK𝑡Mh0=Oh1=XιaIICnC|Fa=Gha0=P1=HXn0=Xn1=yGXA
86 13 ad3antrrr φyMhIICnKnIICnK𝑡Mh0=Oh1=XιaIICnC|Fa=Gha0=P1=HXn0=Xn1=yTSA
87 14 ad3antrrr φyMhIICnKnIICnK𝑡Mh0=Oh1=XιaIICnC|Fa=Gha0=P1=HXn0=Xn1=yMG-1A
88 32 ad3antrrr φyMhIICnKnIICnK𝑡Mh0=Oh1=XιaIICnC|Fa=Gha0=P1=HXn0=Xn1=yXM
89 simpllr φyMhIICnKnIICnK𝑡Mh0=Oh1=XιaIICnC|Fa=Gha0=P1=HXn0=Xn1=yyM
90 simplrl φyMhIICnKnIICnK𝑡Mh0=Oh1=XιaIICnC|Fa=Gha0=P1=HXn0=Xn1=yhIICnK
91 simprl φyMhIICnKnIICnK𝑡Mh0=Oh1=XιaIICnC|Fa=Gha0=P1=HXn0=Xn1=yh0=Oh1=XιaIICnC|Fa=Gha0=P1=HX
92 simplrr φyMhIICnKnIICnK𝑡Mh0=Oh1=XιaIICnC|Fa=Gha0=P1=HXn0=Xn1=ynIICnK𝑡M
93 simprr φyMhIICnKnIICnK𝑡Mh0=Oh1=XιaIICnC|Fa=Gha0=P1=HXn0=Xn1=yn0=Xn1=y
94 55 eqeq1d a=gFa=GnFg=Gn
95 57 eqeq1d a=ga0=HXg0=HX
96 94 95 anbi12d a=gFa=Gna0=HXFg=Gng0=HX
97 96 cbvriotavw ιaIICnC|Fa=Gna0=HX=ιgIICnC|Fg=Gng0=HX
98 1 2 78 79 80 81 82 83 84 10 11 85 86 87 15 88 89 90 60 91 92 93 97 cvmlift3lem6 φyMhIICnKnIICnK𝑡Mh0=Oh1=XιaIICnC|Fa=Gha0=P1=HXn0=Xn1=yHyW
99 98 ex φyMhIICnKnIICnK𝑡Mh0=Oh1=XιaIICnC|Fa=Gha0=P1=HXn0=Xn1=yHyW
100 99 rexlimdvva φyMhIICnKnIICnK𝑡Mh0=Oh1=XιaIICnC|Fa=Gha0=P1=HXn0=Xn1=yHyW
101 77 100 biimtrrid φyMhIICnKh0=Oh1=XιaIICnC|Fa=Gha0=P1=HXnIICnK𝑡Mn0=Xn1=yHyW
102 66 76 101 mp2and φyMHyW
103 102 ralrimiva φyMHyW
104 20 ffund φFunH
105 20 fdmd φdomH=Y
106 31 105 sseqtrrd φMdomH
107 funimass4 FunHMdomHHMWyMHyW
108 104 106 107 syl2anc φHMWyMHyW
109 103 108 mpbird φHMW
110 1 2 11 3 20 22 24 33 13 41 31 109 cvmlift2lem9a φHMK𝑡MCnC
111 74 cncnpi HMK𝑡MCnCXK𝑡MHMK𝑡MCnPCX
112 110 70 111 syl2anc φHMK𝑡MCnPCX
113 2 ssntr KTopMYVKVMVintKM
114 24 31 17 18 113 syl22anc φVintKM
115 114 19 sseldd φXintKM
116 2 1 cnprest KTopMYXintKMH:YBHKCnPCXHMK𝑡MCnPCX
117 24 31 115 20 116 syl22anc φHKCnPCXHMK𝑡MCnPCX
118 112 117 mpbird φHKCnPCX