| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dchrpt.g |  | 
						
							| 2 |  | dchrpt.z |  | 
						
							| 3 |  | dchrpt.d |  | 
						
							| 4 |  | dchrpt.b |  | 
						
							| 5 |  | dchrpt.1 |  | 
						
							| 6 |  | dchrpt.n |  | 
						
							| 7 |  | dchrpt.n1 |  | 
						
							| 8 |  | dchrpt.u |  | 
						
							| 9 |  | dchrpt.h |  | 
						
							| 10 |  | dchrpt.m |  | 
						
							| 11 |  | dchrpt.s |  | 
						
							| 12 |  | dchrpt.au |  | 
						
							| 13 |  | dchrpt.w |  | 
						
							| 14 |  | dchrpt.2 |  | 
						
							| 15 |  | dchrpt.3 |  | 
						
							| 16 |  | dchrpt.p |  | 
						
							| 17 |  | dchrpt.o |  | 
						
							| 18 |  | dchrpt.t |  | 
						
							| 19 |  | dchrpt.i |  | 
						
							| 20 |  | dchrpt.4 |  | 
						
							| 21 |  | dchrpt.5 |  | 
						
							| 22 |  | fveqeq2 |  | 
						
							| 23 | 22 | anbi1d |  | 
						
							| 24 | 23 | rexbidv |  | 
						
							| 25 | 24 | iotabidv |  | 
						
							| 26 |  | iotaex |  | 
						
							| 27 | 25 21 26 | fvmpt3i |  | 
						
							| 28 | 27 | ad2antlr |  | 
						
							| 29 |  | ovex |  | 
						
							| 30 |  | simpr |  | 
						
							| 31 |  | simpllr |  | 
						
							| 32 | 31 | simprd |  | 
						
							| 33 | 30 32 | eqtr3d |  | 
						
							| 34 |  | simp-4l |  | 
						
							| 35 |  | simplr |  | 
						
							| 36 | 31 | simpld |  | 
						
							| 37 | 6 | nnnn0d |  | 
						
							| 38 | 2 | zncrng |  | 
						
							| 39 |  | crngring |  | 
						
							| 40 | 8 9 | unitgrp |  | 
						
							| 41 | 37 38 39 40 | 4syl |  | 
						
							| 42 | 41 | adantr |  | 
						
							| 43 |  | wrdf |  | 
						
							| 44 | 13 43 | syl |  | 
						
							| 45 | 44 | fdmd |  | 
						
							| 46 | 19 45 | eleqtrd |  | 
						
							| 47 | 44 46 | ffvelcdmd |  | 
						
							| 48 | 47 | adantr |  | 
						
							| 49 |  | simprl |  | 
						
							| 50 |  | simprr |  | 
						
							| 51 | 8 9 | unitgrpbas |  | 
						
							| 52 |  | eqid |  | 
						
							| 53 | 51 17 10 52 | odcong |  | 
						
							| 54 | 42 48 49 50 53 | syl112anc |  | 
						
							| 55 |  | neg1cn |  | 
						
							| 56 |  | 2re |  | 
						
							| 57 | 2 4 | znfi |  | 
						
							| 58 | 6 57 | syl |  | 
						
							| 59 | 4 8 | unitss |  | 
						
							| 60 |  | ssfi |  | 
						
							| 61 | 58 59 60 | sylancl |  | 
						
							| 62 | 51 17 | odcl2 |  | 
						
							| 63 | 41 61 47 62 | syl3anc |  | 
						
							| 64 | 63 | ad2antrr |  | 
						
							| 65 |  | nndivre |  | 
						
							| 66 | 56 64 65 | sylancr |  | 
						
							| 67 | 66 | recnd |  | 
						
							| 68 |  | cxpcl |  | 
						
							| 69 | 55 67 68 | sylancr |  | 
						
							| 70 | 18 69 | eqeltrid |  | 
						
							| 71 | 55 | a1i |  | 
						
							| 72 |  | neg1ne0 |  | 
						
							| 73 | 72 | a1i |  | 
						
							| 74 | 71 73 67 | cxpne0d |  | 
						
							| 75 | 18 | neeq1i |  | 
						
							| 76 | 74 75 | sylibr |  | 
						
							| 77 |  | zsubcl |  | 
						
							| 78 | 77 | ad2antlr |  | 
						
							| 79 | 50 | adantr |  | 
						
							| 80 |  | expaddz |  | 
						
							| 81 | 70 76 78 79 80 | syl22anc |  | 
						
							| 82 | 49 | adantr |  | 
						
							| 83 | 82 | zcnd |  | 
						
							| 84 | 79 | zcnd |  | 
						
							| 85 | 83 84 | npcand |  | 
						
							| 86 | 85 | oveq2d |  | 
						
							| 87 | 18 | oveq1i |  | 
						
							| 88 |  | root1eq1 |  | 
						
							| 89 | 63 77 88 | syl2an |  | 
						
							| 90 | 89 | biimpar |  | 
						
							| 91 | 87 90 | eqtrid |  | 
						
							| 92 | 91 | oveq1d |  | 
						
							| 93 | 70 76 79 | expclzd |  | 
						
							| 94 | 93 | mullidd |  | 
						
							| 95 | 92 94 | eqtrd |  | 
						
							| 96 | 81 86 95 | 3eqtr3d |  | 
						
							| 97 | 96 | ex |  | 
						
							| 98 | 54 97 | sylbird |  | 
						
							| 99 | 34 35 36 98 | syl12anc |  | 
						
							| 100 | 33 99 | mpd |  | 
						
							| 101 | 100 | eqeq2d |  | 
						
							| 102 | 101 | biimpd |  | 
						
							| 103 | 102 | expimpd |  | 
						
							| 104 | 103 | rexlimdva |  | 
						
							| 105 |  | oveq1 |  | 
						
							| 106 | 105 | eqeq2d |  | 
						
							| 107 |  | oveq2 |  | 
						
							| 108 | 107 | eqeq2d |  | 
						
							| 109 | 106 108 | anbi12d |  | 
						
							| 110 | 109 | rspcev |  | 
						
							| 111 | 110 | expr |  | 
						
							| 112 | 111 | adantl |  | 
						
							| 113 | 104 112 | impbid |  | 
						
							| 114 | 113 | adantr |  | 
						
							| 115 | 114 | iota5 |  | 
						
							| 116 | 29 115 | mpan2 |  | 
						
							| 117 | 28 116 | eqtrd |  |