Metamath Proof Explorer


Theorem dchrptlem1

Description: Lemma for dchrpt . (Contributed by Mario Carneiro, 28-Apr-2016)

Ref Expression
Hypotheses dchrpt.g G=DChrN
dchrpt.z Z=/N
dchrpt.d D=BaseG
dchrpt.b B=BaseZ
dchrpt.1 1˙=1Z
dchrpt.n φN
dchrpt.n1 φA1˙
dchrpt.u U=UnitZ
dchrpt.h H=mulGrpZ𝑠U
dchrpt.m ·˙=H
dchrpt.s S=kdomWrannn·˙Wk
dchrpt.au φAU
dchrpt.w φWWordU
dchrpt.2 φHdomDProdS
dchrpt.3 φHDProdS=U
dchrpt.p P=HdProjS
dchrpt.o O=odH
dchrpt.t T=12OWI
dchrpt.i φIdomW
dchrpt.4 φPIA1˙
dchrpt.5 X=uUιh|mPIu=m·˙WIh=Tm
Assertion dchrptlem1 φCUMPIC=M·˙WIXC=TM

Proof

Step Hyp Ref Expression
1 dchrpt.g G=DChrN
2 dchrpt.z Z=/N
3 dchrpt.d D=BaseG
4 dchrpt.b B=BaseZ
5 dchrpt.1 1˙=1Z
6 dchrpt.n φN
7 dchrpt.n1 φA1˙
8 dchrpt.u U=UnitZ
9 dchrpt.h H=mulGrpZ𝑠U
10 dchrpt.m ·˙=H
11 dchrpt.s S=kdomWrannn·˙Wk
12 dchrpt.au φAU
13 dchrpt.w φWWordU
14 dchrpt.2 φHdomDProdS
15 dchrpt.3 φHDProdS=U
16 dchrpt.p P=HdProjS
17 dchrpt.o O=odH
18 dchrpt.t T=12OWI
19 dchrpt.i φIdomW
20 dchrpt.4 φPIA1˙
21 dchrpt.5 X=uUιh|mPIu=m·˙WIh=Tm
22 fveqeq2 u=CPIu=m·˙WIPIC=m·˙WI
23 22 anbi1d u=CPIu=m·˙WIh=TmPIC=m·˙WIh=Tm
24 23 rexbidv u=CmPIu=m·˙WIh=TmmPIC=m·˙WIh=Tm
25 24 iotabidv u=Cιh|mPIu=m·˙WIh=Tm=ιh|mPIC=m·˙WIh=Tm
26 iotaex ιh|mPIu=m·˙WIh=TmV
27 25 21 26 fvmpt3i CUXC=ιh|mPIC=m·˙WIh=Tm
28 27 ad2antlr φCUMPIC=M·˙WIXC=ιh|mPIC=m·˙WIh=Tm
29 ovex TMV
30 simpr φCUMPIC=M·˙WImPIC=m·˙WIPIC=m·˙WI
31 simpllr φCUMPIC=M·˙WImPIC=m·˙WIMPIC=M·˙WI
32 31 simprd φCUMPIC=M·˙WImPIC=m·˙WIPIC=M·˙WI
33 30 32 eqtr3d φCUMPIC=M·˙WImPIC=m·˙WIm·˙WI=M·˙WI
34 simp-4l φCUMPIC=M·˙WImPIC=m·˙WIφ
35 simplr φCUMPIC=M·˙WImPIC=m·˙WIm
36 31 simpld φCUMPIC=M·˙WImPIC=m·˙WIM
37 6 nnnn0d φN0
38 2 zncrng N0ZCRing
39 crngring ZCRingZRing
40 8 9 unitgrp ZRingHGrp
41 37 38 39 40 4syl φHGrp
42 41 adantr φmMHGrp
43 wrdf WWordUW:0..^WU
44 13 43 syl φW:0..^WU
45 44 fdmd φdomW=0..^W
46 19 45 eleqtrd φI0..^W
47 44 46 ffvelcdmd φWIU
48 47 adantr φmMWIU
49 simprl φmMm
50 simprr φmMM
51 8 9 unitgrpbas U=BaseH
52 eqid 0H=0H
53 51 17 10 52 odcong HGrpWIUmMOWImMm·˙WI=M·˙WI
54 42 48 49 50 53 syl112anc φmMOWImMm·˙WI=M·˙WI
55 neg1cn 1
56 2re 2
57 2 4 znfi NBFin
58 6 57 syl φBFin
59 4 8 unitss UB
60 ssfi BFinUBUFin
61 58 59 60 sylancl φUFin
62 51 17 odcl2 HGrpUFinWIUOWI
63 41 61 47 62 syl3anc φOWI
64 63 ad2antrr φmMOWImMOWI
65 nndivre 2OWI2OWI
66 56 64 65 sylancr φmMOWImM2OWI
67 66 recnd φmMOWImM2OWI
68 cxpcl 12OWI12OWI
69 55 67 68 sylancr φmMOWImM12OWI
70 18 69 eqeltrid φmMOWImMT
71 55 a1i φmMOWImM1
72 neg1ne0 10
73 72 a1i φmMOWImM10
74 71 73 67 cxpne0d φmMOWImM12OWI0
75 18 neeq1i T012OWI0
76 74 75 sylibr φmMOWImMT0
77 zsubcl mMmM
78 77 ad2antlr φmMOWImMmM
79 50 adantr φmMOWImMM
80 expaddz TT0mMMTm-M+M=TmMTM
81 70 76 78 79 80 syl22anc φmMOWImMTm-M+M=TmMTM
82 49 adantr φmMOWImMm
83 82 zcnd φmMOWImMm
84 79 zcnd φmMOWImMM
85 83 84 npcand φmMOWImMm-M+M=m
86 85 oveq2d φmMOWImMTm-M+M=Tm
87 18 oveq1i TmM=-12OWImM
88 root1eq1 OWImM-12OWImM=1OWImM
89 63 77 88 syl2an φmM-12OWImM=1OWImM
90 89 biimpar φmMOWImM-12OWImM=1
91 87 90 eqtrid φmMOWImMTmM=1
92 91 oveq1d φmMOWImMTmMTM=1TM
93 70 76 79 expclzd φmMOWImMTM
94 93 mullidd φmMOWImM1TM=TM
95 92 94 eqtrd φmMOWImMTmMTM=TM
96 81 86 95 3eqtr3d φmMOWImMTm=TM
97 96 ex φmMOWImMTm=TM
98 54 97 sylbird φmMm·˙WI=M·˙WITm=TM
99 34 35 36 98 syl12anc φCUMPIC=M·˙WImPIC=m·˙WIm·˙WI=M·˙WITm=TM
100 33 99 mpd φCUMPIC=M·˙WImPIC=m·˙WITm=TM
101 100 eqeq2d φCUMPIC=M·˙WImPIC=m·˙WIh=Tmh=TM
102 101 biimpd φCUMPIC=M·˙WImPIC=m·˙WIh=Tmh=TM
103 102 expimpd φCUMPIC=M·˙WImPIC=m·˙WIh=Tmh=TM
104 103 rexlimdva φCUMPIC=M·˙WImPIC=m·˙WIh=Tmh=TM
105 oveq1 m=Mm·˙WI=M·˙WI
106 105 eqeq2d m=MPIC=m·˙WIPIC=M·˙WI
107 oveq2 m=MTm=TM
108 107 eqeq2d m=Mh=Tmh=TM
109 106 108 anbi12d m=MPIC=m·˙WIh=TmPIC=M·˙WIh=TM
110 109 rspcev MPIC=M·˙WIh=TMmPIC=m·˙WIh=Tm
111 110 expr MPIC=M·˙WIh=TMmPIC=m·˙WIh=Tm
112 111 adantl φCUMPIC=M·˙WIh=TMmPIC=m·˙WIh=Tm
113 104 112 impbid φCUMPIC=M·˙WImPIC=m·˙WIh=Tmh=TM
114 113 adantr φCUMPIC=M·˙WITMVmPIC=m·˙WIh=Tmh=TM
115 114 iota5 φCUMPIC=M·˙WITMVιh|mPIC=m·˙WIh=Tm=TM
116 29 115 mpan2 φCUMPIC=M·˙WIιh|mPIC=m·˙WIh=Tm=TM
117 28 116 eqtrd φCUMPIC=M·˙WIXC=TM