Metamath Proof Explorer


Theorem diaintclN

Description: The intersection of partial isomorphism A closed subspaces is a closed subspace. (Contributed by NM, 3-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses diaintcl.h H=LHypK
diaintcl.i I=DIsoAKW
Assertion diaintclN KHLWHSranISSranI

Proof

Step Hyp Ref Expression
1 diaintcl.h H=LHypK
2 diaintcl.i I=DIsoAKW
3 1 2 diaf11N KHLWHI:domI1-1 ontoranI
4 3 adantr KHLWHSranISI:domI1-1 ontoranI
5 f1ofn I:domI1-1 ontoranIIFndomI
6 4 5 syl KHLWHSranISIFndomI
7 cnvimass I-1SdomI
8 fnssres IFndomII-1SdomIII-1SFnI-1S
9 6 7 8 sylancl KHLWHSranISII-1SFnI-1S
10 fniinfv II-1SFnI-1SyI-1SII-1Sy=ranII-1S
11 9 10 syl KHLWHSranISyI-1SII-1Sy=ranII-1S
12 df-ima II-1S=ranII-1S
13 f1ofo I:domI1-1 ontoranII:domIontoranI
14 3 13 syl KHLWHI:domIontoranI
15 14 adantr KHLWHSranISI:domIontoranI
16 simprl KHLWHSranISSranI
17 foimacnv I:domIontoranISranIII-1S=S
18 15 16 17 syl2anc KHLWHSranISII-1S=S
19 12 18 eqtr3id KHLWHSranISranII-1S=S
20 19 inteqd KHLWHSranISranII-1S=S
21 11 20 eqtrd KHLWHSranISyI-1SII-1Sy=S
22 simpl KHLWHSranISKHLWH
23 7 a1i KHLWHSranISI-1SdomI
24 simprr KHLWHSranISS
25 n0 SyyS
26 24 25 sylib KHLWHSranISyyS
27 16 sselda KHLWHSranISySyranI
28 3 ad2antrr KHLWHSranISySI:domI1-1 ontoranI
29 28 5 syl KHLWHSranISySIFndomI
30 fvelrnb IFndomIyranIxdomIIx=y
31 29 30 syl KHLWHSranISySyranIxdomIIx=y
32 27 31 mpbid KHLWHSranISySxdomIIx=y
33 f1ofun I:domI1-1 ontoranIFunI
34 3 33 syl KHLWHFunI
35 34 adantr KHLWHSranISFunI
36 fvimacnv FunIxdomIIxSxI-1S
37 35 36 sylan KHLWHSranISxdomIIxSxI-1S
38 ne0i xI-1SI-1S
39 37 38 syl6bi KHLWHSranISxdomIIxSI-1S
40 39 ex KHLWHSranISxdomIIxSI-1S
41 eleq1 Ix=yIxSyS
42 41 biimprd Ix=yySIxS
43 42 imim1d Ix=yIxSI-1SySI-1S
44 40 43 syl9 KHLWHSranISIx=yxdomIySI-1S
45 44 com24 KHLWHSranISySxdomIIx=yI-1S
46 45 imp KHLWHSranISySxdomIIx=yI-1S
47 46 rexlimdv KHLWHSranISySxdomIIx=yI-1S
48 32 47 mpd KHLWHSranISySI-1S
49 26 48 exlimddv KHLWHSranISI-1S
50 eqid glbK=glbK
51 50 1 2 diaglbN KHLWHI-1SdomII-1SIglbKI-1S=yI-1SIy
52 22 23 49 51 syl12anc KHLWHSranISIglbKI-1S=yI-1SIy
53 fvres yI-1SII-1Sy=Iy
54 53 iineq2i yI-1SII-1Sy=yI-1SIy
55 52 54 eqtr4di KHLWHSranISIglbKI-1S=yI-1SII-1Sy
56 hlclat KHLKCLat
57 56 ad2antrr KHLWHSranISKCLat
58 eqid BaseK=BaseK
59 eqid K=K
60 58 59 1 2 diadm KHLWHdomI=xBaseK|xKW
61 ssrab2 xBaseK|xKWBaseK
62 60 61 eqsstrdi KHLWHdomIBaseK
63 62 adantr KHLWHSranISdomIBaseK
64 7 63 sstrid KHLWHSranISI-1SBaseK
65 58 50 clatglbcl KCLatI-1SBaseKglbKI-1SBaseK
66 57 64 65 syl2anc KHLWHSranISglbKI-1SBaseK
67 n0 I-1SyyI-1S
68 49 67 sylib KHLWHSranISyyI-1S
69 hllat KHLKLat
70 69 ad3antrrr KHLWHSranISyI-1SKLat
71 66 adantr KHLWHSranISyI-1SglbKI-1SBaseK
72 64 sselda KHLWHSranISyI-1SyBaseK
73 58 1 lhpbase WHWBaseK
74 73 ad3antlr KHLWHSranISyI-1SWBaseK
75 56 ad3antrrr KHLWHSranISyI-1SKCLat
76 60 adantr KHLWHSranISdomI=xBaseK|xKW
77 7 76 sseqtrid KHLWHSranISI-1SxBaseK|xKW
78 77 61 sstrdi KHLWHSranISI-1SBaseK
79 78 adantr KHLWHSranISyI-1SI-1SBaseK
80 simpr KHLWHSranISyI-1SyI-1S
81 58 59 50 clatglble KCLatI-1SBaseKyI-1SglbKI-1SKy
82 75 79 80 81 syl3anc KHLWHSranISyI-1SglbKI-1SKy
83 7 sseli yI-1SydomI
84 83 adantl KHLWHSranISyI-1SydomI
85 58 59 1 2 diaeldm KHLWHydomIyBaseKyKW
86 85 ad2antrr KHLWHSranISyI-1SydomIyBaseKyKW
87 84 86 mpbid KHLWHSranISyI-1SyBaseKyKW
88 87 simprd KHLWHSranISyI-1SyKW
89 58 59 70 71 72 74 82 88 lattrd KHLWHSranISyI-1SglbKI-1SKW
90 68 89 exlimddv KHLWHSranISglbKI-1SKW
91 58 59 1 2 diaeldm KHLWHglbKI-1SdomIglbKI-1SBaseKglbKI-1SKW
92 91 adantr KHLWHSranISglbKI-1SdomIglbKI-1SBaseKglbKI-1SKW
93 66 90 92 mpbir2and KHLWHSranISglbKI-1SdomI
94 1 2 diaclN KHLWHglbKI-1SdomIIglbKI-1SranI
95 93 94 syldan KHLWHSranISIglbKI-1SranI
96 55 95 eqeltrrd KHLWHSranISyI-1SII-1SyranI
97 21 96 eqeltrrd KHLWHSranISSranI