| Step | Hyp | Ref | Expression | 
						
							| 1 |  | diaintcl.h |  | 
						
							| 2 |  | diaintcl.i |  | 
						
							| 3 | 1 2 | diaf11N |  | 
						
							| 4 | 3 | adantr |  | 
						
							| 5 |  | f1ofn |  | 
						
							| 6 | 4 5 | syl |  | 
						
							| 7 |  | cnvimass |  | 
						
							| 8 |  | fnssres |  | 
						
							| 9 | 6 7 8 | sylancl |  | 
						
							| 10 |  | fniinfv |  | 
						
							| 11 | 9 10 | syl |  | 
						
							| 12 |  | df-ima |  | 
						
							| 13 |  | f1ofo |  | 
						
							| 14 | 3 13 | syl |  | 
						
							| 15 | 14 | adantr |  | 
						
							| 16 |  | simprl |  | 
						
							| 17 |  | foimacnv |  | 
						
							| 18 | 15 16 17 | syl2anc |  | 
						
							| 19 | 12 18 | eqtr3id |  | 
						
							| 20 | 19 | inteqd |  | 
						
							| 21 | 11 20 | eqtrd |  | 
						
							| 22 |  | simpl |  | 
						
							| 23 | 7 | a1i |  | 
						
							| 24 |  | simprr |  | 
						
							| 25 |  | n0 |  | 
						
							| 26 | 24 25 | sylib |  | 
						
							| 27 | 16 | sselda |  | 
						
							| 28 | 3 | ad2antrr |  | 
						
							| 29 | 28 5 | syl |  | 
						
							| 30 |  | fvelrnb |  | 
						
							| 31 | 29 30 | syl |  | 
						
							| 32 | 27 31 | mpbid |  | 
						
							| 33 |  | f1ofun |  | 
						
							| 34 | 3 33 | syl |  | 
						
							| 35 | 34 | adantr |  | 
						
							| 36 |  | fvimacnv |  | 
						
							| 37 | 35 36 | sylan |  | 
						
							| 38 |  | ne0i |  | 
						
							| 39 | 37 38 | biimtrdi |  | 
						
							| 40 | 39 | ex |  | 
						
							| 41 |  | eleq1 |  | 
						
							| 42 | 41 | biimprd |  | 
						
							| 43 | 42 | imim1d |  | 
						
							| 44 | 40 43 | syl9 |  | 
						
							| 45 | 44 | com24 |  | 
						
							| 46 | 45 | imp |  | 
						
							| 47 | 46 | rexlimdv |  | 
						
							| 48 | 32 47 | mpd |  | 
						
							| 49 | 26 48 | exlimddv |  | 
						
							| 50 |  | eqid |  | 
						
							| 51 | 50 1 2 | diaglbN |  | 
						
							| 52 | 22 23 49 51 | syl12anc |  | 
						
							| 53 |  | fvres |  | 
						
							| 54 | 53 | iineq2i |  | 
						
							| 55 | 52 54 | eqtr4di |  | 
						
							| 56 |  | hlclat |  | 
						
							| 57 | 56 | ad2antrr |  | 
						
							| 58 |  | eqid |  | 
						
							| 59 |  | eqid |  | 
						
							| 60 | 58 59 1 2 | diadm |  | 
						
							| 61 |  | ssrab2 |  | 
						
							| 62 | 60 61 | eqsstrdi |  | 
						
							| 63 | 62 | adantr |  | 
						
							| 64 | 7 63 | sstrid |  | 
						
							| 65 | 58 50 | clatglbcl |  | 
						
							| 66 | 57 64 65 | syl2anc |  | 
						
							| 67 |  | n0 |  | 
						
							| 68 | 49 67 | sylib |  | 
						
							| 69 |  | hllat |  | 
						
							| 70 | 69 | ad3antrrr |  | 
						
							| 71 | 66 | adantr |  | 
						
							| 72 | 64 | sselda |  | 
						
							| 73 | 58 1 | lhpbase |  | 
						
							| 74 | 73 | ad3antlr |  | 
						
							| 75 | 56 | ad3antrrr |  | 
						
							| 76 | 60 | adantr |  | 
						
							| 77 | 7 76 | sseqtrid |  | 
						
							| 78 | 77 61 | sstrdi |  | 
						
							| 79 | 78 | adantr |  | 
						
							| 80 |  | simpr |  | 
						
							| 81 | 58 59 50 | clatglble |  | 
						
							| 82 | 75 79 80 81 | syl3anc |  | 
						
							| 83 | 7 | sseli |  | 
						
							| 84 | 83 | adantl |  | 
						
							| 85 | 58 59 1 2 | diaeldm |  | 
						
							| 86 | 85 | ad2antrr |  | 
						
							| 87 | 84 86 | mpbid |  | 
						
							| 88 | 87 | simprd |  | 
						
							| 89 | 58 59 70 71 72 74 82 88 | lattrd |  | 
						
							| 90 | 68 89 | exlimddv |  | 
						
							| 91 | 58 59 1 2 | diaeldm |  | 
						
							| 92 | 91 | adantr |  | 
						
							| 93 | 66 90 92 | mpbir2and |  | 
						
							| 94 | 1 2 | diaclN |  | 
						
							| 95 | 93 94 | syldan |  | 
						
							| 96 | 55 95 | eqeltrrd |  | 
						
							| 97 | 21 96 | eqeltrrd |  |