Metamath Proof Explorer


Theorem dvbdfbdioolem1

Description: Given a function with bounded derivative, on an open interval, here is an absolute bound to the difference of the image of two points in the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses dvbdfbdioolem1.a φA
dvbdfbdioolem1.b φB
dvbdfbdioolem1.f φF:AB
dvbdfbdioolem1.dmdv φdomF=AB
dvbdfbdioolem1.k φK
dvbdfbdioolem1.dvbd φxABFxK
dvbdfbdioolem1.c φCAB
dvbdfbdioolem1.d φDCB
Assertion dvbdfbdioolem1 φFDFCKDCFDFCKBA

Proof

Step Hyp Ref Expression
1 dvbdfbdioolem1.a φA
2 dvbdfbdioolem1.b φB
3 dvbdfbdioolem1.f φF:AB
4 dvbdfbdioolem1.dmdv φdomF=AB
5 dvbdfbdioolem1.k φK
6 dvbdfbdioolem1.dvbd φxABFxK
7 dvbdfbdioolem1.c φCAB
8 dvbdfbdioolem1.d φDCB
9 ioossre AB
10 9 7 sselid φC
11 ioossre CB
12 11 8 sselid φD
13 10 rexrd φC*
14 2 rexrd φB*
15 ioogtlb C*B*DCBC<D
16 13 14 8 15 syl3anc φC<D
17 1 rexrd φA*
18 ioogtlb A*B*CABA<C
19 17 14 7 18 syl3anc φA<C
20 iooltub C*B*DCBD<B
21 13 14 8 20 syl3anc φD<B
22 iccssioo A*B*A<CD<BCDAB
23 17 14 19 21 22 syl22anc φCDAB
24 ax-resscn
25 24 a1i φ
26 3 25 fssd φF:AB
27 9 a1i φAB
28 dvcn F:ABABdomF=ABF:ABcn
29 25 26 27 4 28 syl31anc φF:ABcn
30 cncfcdm F:ABcnF:ABcnF:AB
31 25 29 30 syl2anc φF:ABcnF:AB
32 3 31 mpbird φF:ABcn
33 rescncf CDABF:ABcnFCD:CDcn
34 23 32 33 sylc φFCD:CDcn
35 23 27 sstrd φCD
36 eqid TopOpenfld=TopOpenfld
37 36 tgioo2 topGenran.=TopOpenfld𝑡
38 36 37 dvres F:ABABCDDFCD=FinttopGenran.CD
39 25 26 27 35 38 syl22anc φDFCD=FinttopGenran.CD
40 iccntr CDinttopGenran.CD=CD
41 10 12 40 syl2anc φinttopGenran.CD=CD
42 41 reseq2d φFinttopGenran.CD=FCD
43 39 42 eqtrd φDFCD=FCD
44 43 dmeqd φdomFCD=domFCD
45 1 10 19 ltled φAC
46 12 2 21 ltled φDB
47 ioossioo A*B*ACDBCDAB
48 17 14 45 46 47 syl22anc φCDAB
49 48 4 sseqtrrd φCDdomF
50 ssdmres CDdomFdomFCD=CD
51 49 50 sylib φdomFCD=CD
52 44 51 eqtrd φdomFCD=CD
53 10 12 16 34 52 mvth φxCDFCDx=FCDDFCDCDC
54 43 fveq1d φFCDx=FCDx
55 fvres xCDFCDx=Fx
56 54 55 sylan9eq φxCDFCDx=Fx
57 56 eqcomd φxCDFx=FCDx
58 57 3adant3 φxCDFCDx=FCDDFCDCDCFx=FCDx
59 simp3 φxCDFCDx=FCDDFCDCDCFCDx=FCDDFCDCDC
60 12 rexrd φD*
61 10 12 16 ltled φCD
62 ubicc2 C*D*CDDCD
63 13 60 61 62 syl3anc φDCD
64 fvres DCDFCDD=FD
65 63 64 syl φFCDD=FD
66 lbicc2 C*D*CDCCD
67 13 60 61 66 syl3anc φCCD
68 fvres CCDFCDC=FC
69 67 68 syl φFCDC=FC
70 65 69 oveq12d φFCDDFCDC=FDFC
71 70 oveq1d φFCDDFCDCDC=FDFCDC
72 71 3ad2ant1 φxCDFCDx=FCDDFCDCDCFCDDFCDCDC=FDFCDC
73 58 59 72 3eqtrd φxCDFCDx=FCDDFCDCDCFx=FDFCDC
74 simp3 φxCDFx=FDFCDCFx=FDFCDC
75 74 eqcomd φxCDFx=FDFCDCFDFCDC=Fx
76 23 63 sseldd φDAB
77 3 76 ffvelcdmd φFD
78 3 7 ffvelcdmd φFC
79 77 78 resubcld φFDFC
80 79 recnd φFDFC
81 80 3ad2ant1 φxCDFx=FDFCDCFDFC
82 dvfre F:ABABF:domF
83 3 27 82 syl2anc φF:domF
84 4 feq2d φF:domFF:AB
85 83 84 mpbid φF:AB
86 85 adantr φxCDF:AB
87 48 sselda φxCDxAB
88 86 87 ffvelcdmd φxCDFx
89 88 recnd φxCDFx
90 89 3adant3 φxCDFx=FDFCDCFx
91 12 10 resubcld φDC
92 91 recnd φDC
93 92 3ad2ant1 φxCDFx=FDFCDCDC
94 10 12 posdifd φC<D0<DC
95 16 94 mpbid φ0<DC
96 95 gt0ne0d φDC0
97 96 3ad2ant1 φxCDFx=FDFCDCDC0
98 81 90 93 97 divmul3d φxCDFx=FDFCDCFDFCDC=FxFDFC=FxDC
99 75 98 mpbid φxCDFx=FDFCDCFDFC=FxDC
100 99 fveq2d φxCDFx=FDFCDCFDFC=FxDC
101 92 adantr φxCDDC
102 89 101 absmuld φxCDFxDC=FxDC
103 102 3adant3 φxCDFx=FDFCDCFxDC=FxDC
104 100 103 eqtrd φxCDFx=FDFCDCFDFC=FxDC
105 10 12 61 abssubge0d φDC=DC
106 105 oveq2d φFxDC=FxDC
107 106 3ad2ant1 φxCDFx=FDFCDCFxDC=FxDC
108 104 107 eqtrd φxCDFx=FDFCDCFDFC=FxDC
109 89 abscld φxCDFx
110 5 adantr φxCDK
111 91 adantr φxCDDC
112 0red φ0
113 112 91 95 ltled φ0DC
114 113 adantr φxCD0DC
115 6 adantr φxCDxABFxK
116 rspa xABFxKxABFxK
117 115 87 116 syl2anc φxCDFxK
118 109 110 111 114 117 lemul1ad φxCDFxDCKDC
119 118 3adant3 φxCDFx=FDFCDCFxDCKDC
120 108 119 eqbrtrd φxCDFx=FDFCDCFDFCKDC
121 73 120 syld3an3 φxCDFCDx=FCDDFCDCDCFDFCKDC
122 101 abscld φxCDDC
123 2 1 resubcld φBA
124 123 adantr φxCDBA
125 89 absge0d φxCD0Fx
126 101 absge0d φxCD0DC
127 12 1 2 10 46 45 le2subd φDCBA
128 105 127 eqbrtrd φDCBA
129 128 adantr φxCDDCBA
130 109 110 122 124 125 126 117 129 lemul12ad φxCDFxDCKBA
131 130 3adant3 φxCDFx=FDFCDCFxDCKBA
132 104 131 eqbrtrd φxCDFx=FDFCDCFDFCKBA
133 73 132 syld3an3 φxCDFCDx=FCDDFCDCDCFDFCKBA
134 121 133 jca φxCDFCDx=FCDDFCDCDCFDFCKDCFDFCKBA
135 134 rexlimdv3a φxCDFCDx=FCDDFCDCDCFDFCKDCFDFCKBA
136 53 135 mpd φFDFCKDCFDFCKBA