Metamath Proof Explorer


Theorem dvbdfbdioolem1

Description: Given a function with bounded derivative, on an open interval, here is an absolute bound to the difference of the image of two points in the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses dvbdfbdioolem1.a φ A
dvbdfbdioolem1.b φ B
dvbdfbdioolem1.f φ F : A B
dvbdfbdioolem1.dmdv φ dom F = A B
dvbdfbdioolem1.k φ K
dvbdfbdioolem1.dvbd φ x A B F x K
dvbdfbdioolem1.c φ C A B
dvbdfbdioolem1.d φ D C B
Assertion dvbdfbdioolem1 φ F D F C K D C F D F C K B A

Proof

Step Hyp Ref Expression
1 dvbdfbdioolem1.a φ A
2 dvbdfbdioolem1.b φ B
3 dvbdfbdioolem1.f φ F : A B
4 dvbdfbdioolem1.dmdv φ dom F = A B
5 dvbdfbdioolem1.k φ K
6 dvbdfbdioolem1.dvbd φ x A B F x K
7 dvbdfbdioolem1.c φ C A B
8 dvbdfbdioolem1.d φ D C B
9 ioossre A B
10 9 7 sseldi φ C
11 ioossre C B
12 11 8 sseldi φ D
13 10 rexrd φ C *
14 2 rexrd φ B *
15 ioogtlb C * B * D C B C < D
16 13 14 8 15 syl3anc φ C < D
17 1 rexrd φ A *
18 ioogtlb A * B * C A B A < C
19 17 14 7 18 syl3anc φ A < C
20 iooltub C * B * D C B D < B
21 13 14 8 20 syl3anc φ D < B
22 iccssioo A * B * A < C D < B C D A B
23 17 14 19 21 22 syl22anc φ C D A B
24 ax-resscn
25 24 a1i φ
26 3 25 fssd φ F : A B
27 9 a1i φ A B
28 dvcn F : A B A B dom F = A B F : A B cn
29 25 26 27 4 28 syl31anc φ F : A B cn
30 cncffvrn F : A B cn F : A B cn F : A B
31 25 29 30 syl2anc φ F : A B cn F : A B
32 3 31 mpbird φ F : A B cn
33 rescncf C D A B F : A B cn F C D : C D cn
34 23 32 33 sylc φ F C D : C D cn
35 23 27 sstrd φ C D
36 eqid TopOpen fld = TopOpen fld
37 36 tgioo2 topGen ran . = TopOpen fld 𝑡
38 36 37 dvres F : A B A B C D D F C D = F int topGen ran . C D
39 25 26 27 35 38 syl22anc φ D F C D = F int topGen ran . C D
40 iccntr C D int topGen ran . C D = C D
41 10 12 40 syl2anc φ int topGen ran . C D = C D
42 41 reseq2d φ F int topGen ran . C D = F C D
43 39 42 eqtrd φ D F C D = F C D
44 43 dmeqd φ dom F C D = dom F C D
45 1 10 19 ltled φ A C
46 12 2 21 ltled φ D B
47 ioossioo A * B * A C D B C D A B
48 17 14 45 46 47 syl22anc φ C D A B
49 48 4 sseqtrrd φ C D dom F
50 ssdmres C D dom F dom F C D = C D
51 49 50 sylib φ dom F C D = C D
52 44 51 eqtrd φ dom F C D = C D
53 10 12 16 34 52 mvth φ x C D F C D x = F C D D F C D C D C
54 43 fveq1d φ F C D x = F C D x
55 fvres x C D F C D x = F x
56 54 55 sylan9eq φ x C D F C D x = F x
57 56 eqcomd φ x C D F x = F C D x
58 57 3adant3 φ x C D F C D x = F C D D F C D C D C F x = F C D x
59 simp3 φ x C D F C D x = F C D D F C D C D C F C D x = F C D D F C D C D C
60 12 rexrd φ D *
61 10 12 16 ltled φ C D
62 ubicc2 C * D * C D D C D
63 13 60 61 62 syl3anc φ D C D
64 fvres D C D F C D D = F D
65 63 64 syl φ F C D D = F D
66 lbicc2 C * D * C D C C D
67 13 60 61 66 syl3anc φ C C D
68 fvres C C D F C D C = F C
69 67 68 syl φ F C D C = F C
70 65 69 oveq12d φ F C D D F C D C = F D F C
71 70 oveq1d φ F C D D F C D C D C = F D F C D C
72 71 3ad2ant1 φ x C D F C D x = F C D D F C D C D C F C D D F C D C D C = F D F C D C
73 58 59 72 3eqtrd φ x C D F C D x = F C D D F C D C D C F x = F D F C D C
74 simp3 φ x C D F x = F D F C D C F x = F D F C D C
75 74 eqcomd φ x C D F x = F D F C D C F D F C D C = F x
76 23 63 sseldd φ D A B
77 3 76 ffvelrnd φ F D
78 3 7 ffvelrnd φ F C
79 77 78 resubcld φ F D F C
80 79 recnd φ F D F C
81 80 3ad2ant1 φ x C D F x = F D F C D C F D F C
82 dvfre F : A B A B F : dom F
83 3 27 82 syl2anc φ F : dom F
84 4 feq2d φ F : dom F F : A B
85 83 84 mpbid φ F : A B
86 85 adantr φ x C D F : A B
87 48 sselda φ x C D x A B
88 86 87 ffvelrnd φ x C D F x
89 88 recnd φ x C D F x
90 89 3adant3 φ x C D F x = F D F C D C F x
91 12 10 resubcld φ D C
92 91 recnd φ D C
93 92 3ad2ant1 φ x C D F x = F D F C D C D C
94 10 12 posdifd φ C < D 0 < D C
95 16 94 mpbid φ 0 < D C
96 95 gt0ne0d φ D C 0
97 96 3ad2ant1 φ x C D F x = F D F C D C D C 0
98 81 90 93 97 divmul3d φ x C D F x = F D F C D C F D F C D C = F x F D F C = F x D C
99 75 98 mpbid φ x C D F x = F D F C D C F D F C = F x D C
100 99 fveq2d φ x C D F x = F D F C D C F D F C = F x D C
101 92 adantr φ x C D D C
102 89 101 absmuld φ x C D F x D C = F x D C
103 102 3adant3 φ x C D F x = F D F C D C F x D C = F x D C
104 100 103 eqtrd φ x C D F x = F D F C D C F D F C = F x D C
105 10 12 61 abssubge0d φ D C = D C
106 105 oveq2d φ F x D C = F x D C
107 106 3ad2ant1 φ x C D F x = F D F C D C F x D C = F x D C
108 104 107 eqtrd φ x C D F x = F D F C D C F D F C = F x D C
109 89 abscld φ x C D F x
110 5 adantr φ x C D K
111 91 adantr φ x C D D C
112 0red φ 0
113 112 91 95 ltled φ 0 D C
114 113 adantr φ x C D 0 D C
115 6 adantr φ x C D x A B F x K
116 rspa x A B F x K x A B F x K
117 115 87 116 syl2anc φ x C D F x K
118 109 110 111 114 117 lemul1ad φ x C D F x D C K D C
119 118 3adant3 φ x C D F x = F D F C D C F x D C K D C
120 108 119 eqbrtrd φ x C D F x = F D F C D C F D F C K D C
121 73 120 syld3an3 φ x C D F C D x = F C D D F C D C D C F D F C K D C
122 101 abscld φ x C D D C
123 2 1 resubcld φ B A
124 123 adantr φ x C D B A
125 89 absge0d φ x C D 0 F x
126 101 absge0d φ x C D 0 D C
127 12 1 2 10 46 45 le2subd φ D C B A
128 105 127 eqbrtrd φ D C B A
129 128 adantr φ x C D D C B A
130 109 110 122 124 125 126 117 129 lemul12ad φ x C D F x D C K B A
131 130 3adant3 φ x C D F x = F D F C D C F x D C K B A
132 104 131 eqbrtrd φ x C D F x = F D F C D C F D F C K B A
133 73 132 syld3an3 φ x C D F C D x = F C D D F C D C D C F D F C K B A
134 121 133 jca φ x C D F C D x = F C D D F C D C D C F D F C K D C F D F C K B A
135 134 rexlimdv3a φ x C D F C D x = F C D D F C D C D C F D F C K D C F D F C K B A
136 53 135 mpd φ F D F C K D C F D F C K B A