Metamath Proof Explorer


Theorem dvfsumrlim

Description: Compare a finite sum to an integral (the integral here is given as a function with a known derivative). The statement here says that if x e. S |-> B is a decreasing function with antiderivative A converging to zero, then the difference between sum_ k e. ( M ... ( |_x ) ) B ( k ) and A ( x ) = S. u e. ( M , x ) B ( u ) _d u converges to a constant limit value, with the remainder term bounded by B ( x ) . (Contributed by Mario Carneiro, 18-May-2016)

Ref Expression
Hypotheses dvfsum.s S=T+∞
dvfsum.z Z=M
dvfsum.m φM
dvfsum.d φD
dvfsum.md φMD+1
dvfsum.t φT
dvfsum.a φxSA
dvfsum.b1 φxSBV
dvfsum.b2 φxZB
dvfsum.b3 φdxSAdx=xSB
dvfsum.c x=kB=C
dvfsumrlim.l φxSkSDxxkCB
dvfsumrlim.g G=xSk=MxCA
dvfsumrlim.k φxSB0
Assertion dvfsumrlim φGdom

Proof

Step Hyp Ref Expression
1 dvfsum.s S=T+∞
2 dvfsum.z Z=M
3 dvfsum.m φM
4 dvfsum.d φD
5 dvfsum.md φMD+1
6 dvfsum.t φT
7 dvfsum.a φxSA
8 dvfsum.b1 φxSBV
9 dvfsum.b2 φxZB
10 dvfsum.b3 φdxSAdx=xSB
11 dvfsum.c x=kB=C
12 dvfsumrlim.l φxSkSDxxkCB
13 dvfsumrlim.g G=xSk=MxCA
14 dvfsumrlim.k φxSB0
15 ioossre T+∞
16 1 15 eqsstri S
17 16 a1i φS
18 1 2 3 4 5 6 7 8 9 10 11 13 dvfsumrlimf φG:S
19 ax-resscn
20 fss G:SG:S
21 18 19 20 sylancl φG:S
22 1 supeq1i supS*<=supT+∞*<
23 ressxr *
24 23 6 sselid φT*
25 6 renepnfd φT+∞
26 ioopnfsup T*T+∞supT+∞*<=+∞
27 24 25 26 syl2anc φsupT+∞*<=+∞
28 22 27 eqtrid φsupS*<=+∞
29 8 14 rlimmptrcl φxSB
30 29 ralrimiva φxSB
31 30 17 rlim0 φxSB0e+cxScxB<e
32 14 31 mpbid φe+cxScxB<e
33 16 a1i φe+S
34 peano2re TT+1
35 6 34 syl φT+1
36 35 4 ifcld φifDT+1T+1D
37 36 adantr φe+ifDT+1T+1D
38 rexico SifDT+1T+1DcifDT+1T+1D+∞xScxB<ecxScxB<e
39 33 37 38 syl2anc φe+cifDT+1T+1D+∞xScxB<ecxScxB<e
40 elicopnf ifDT+1T+1DcifDT+1T+1D+∞cifDT+1T+1Dc
41 36 40 syl φcifDT+1T+1D+∞cifDT+1T+1Dc
42 41 simprbda φcifDT+1T+1D+∞c
43 6 adantr φcifDT+1T+1D+∞T
44 43 34 syl φcifDT+1T+1D+∞T+1
45 43 ltp1d φcifDT+1T+1D+∞T<T+1
46 41 simplbda φcifDT+1T+1D+∞ifDT+1T+1Dc
47 4 adantr φcifDT+1T+1D+∞D
48 maxle DT+1cifDT+1T+1DcDcT+1c
49 47 44 42 48 syl3anc φcifDT+1T+1D+∞ifDT+1T+1DcDcT+1c
50 46 49 mpbid φcifDT+1T+1D+∞DcT+1c
51 50 simprd φcifDT+1T+1D+∞T+1c
52 43 44 42 45 51 ltletrd φcifDT+1T+1D+∞T<c
53 24 adantr φcifDT+1T+1D+∞T*
54 elioopnf T*cT+∞cT<c
55 53 54 syl φcifDT+1T+1D+∞cT+∞cT<c
56 42 52 55 mpbir2and φcifDT+1T+1D+∞cT+∞
57 56 1 eleqtrrdi φcifDT+1T+1D+∞cS
58 50 simpld φcifDT+1T+1D+∞Dc
59 57 58 jca φcifDT+1T+1D+∞cSDc
60 59 adantlr φe+cifDT+1T+1D+∞cSDc
61 simprrl φe+cSDccS
62 61 adantrr φe+cSDcyScycS
63 16 62 sselid φe+cSDcyScyc
64 63 leidd φe+cSDcyScycc
65 nfv xcc
66 nfcv _xabs
67 nfcsb1v _xc/xB
68 66 67 nffv _xc/xB
69 nfcv _x<
70 nfcv _xe
71 68 69 70 nfbr xc/xB<e
72 65 71 nfim xccc/xB<e
73 breq2 x=ccxcc
74 csbeq1a x=cB=c/xB
75 74 fveq2d x=cB=c/xB
76 75 breq1d x=cB<ec/xB<e
77 73 76 imbi12d x=ccxB<eccc/xB<e
78 72 77 rspc cSxScxB<eccc/xB<e
79 62 78 syl φe+cSDcyScyxScxB<eccc/xB<e
80 64 79 mpid φe+cSDcyScyxScxB<ec/xB<e
81 17 7 8 10 dvmptrecl φxSB
82 81 adantrr φxSDxB
83 1 2 3 4 5 6 7 8 9 10 11 12 13 14 dvfsumrlimge0 φxSDx0B
84 elrege0 B0+∞B0B
85 82 83 84 sylanbrc φxSDxB0+∞
86 85 expr φxSDxB0+∞
87 86 ralrimiva φxSDxB0+∞
88 87 adantr φe+cSDcyScyxSDxB0+∞
89 simprrr φe+cSDcDc
90 89 adantrr φe+cSDcyScyDc
91 nfv xDc
92 67 nfel1 xc/xB0+∞
93 91 92 nfim xDcc/xB0+∞
94 breq2 x=cDxDc
95 74 eleq1d x=cB0+∞c/xB0+∞
96 94 95 imbi12d x=cDxB0+∞Dcc/xB0+∞
97 93 96 rspc cSxSDxB0+∞Dcc/xB0+∞
98 62 88 90 97 syl3c φe+cSDcyScyc/xB0+∞
99 elrege0 c/xB0+∞c/xB0c/xB
100 98 99 sylib φe+cSDcyScyc/xB0c/xB
101 absid c/xB0c/xBc/xB=c/xB
102 100 101 syl φe+cSDcyScyc/xB=c/xB
103 102 breq1d φe+cSDcyScyc/xB<ec/xB<e
104 3 adantr φe+cSDcyScyM
105 4 adantr φe+cSDcyScyD
106 5 adantr φe+cSDcyScyMD+1
107 6 adantr φe+cSDcyScyT
108 7 adantlr φe+cSDcyScyxSA
109 8 adantlr φe+cSDcyScyxSBV
110 9 adantlr φe+cSDcyScyxZB
111 10 adantr φe+cSDcyScydxSAdx=xSB
112 pnfxr +∞*
113 112 a1i φe+cSDcyScy+∞*
114 3simpa Dxxkk+∞Dxxk
115 114 12 syl3an3 φxSkSDxxkk+∞CB
116 115 3adant1r φe+cSDcyScyxSkSDxxkk+∞CB
117 83 3adantr3 φxSDxx+∞0B
118 117 adantlr φe+cSDcyScyxSDxx+∞0B
119 simprrl φe+cSDcyScyyS
120 simprrr φe+cSDcyScycy
121 16 23 sstri S*
122 121 119 sselid φe+cSDcyScyy*
123 pnfge y*y+∞
124 122 123 syl φe+cSDcyScyy+∞
125 1 2 104 105 106 107 108 109 110 111 11 113 116 13 118 62 119 90 120 124 dvfsumlem4 φe+cSDcyScyGyGcc/xB
126 21 adantr φe+cSDcyScyG:S
127 126 119 ffvelcdmd φe+cSDcyScyGy
128 126 62 ffvelcdmd φe+cSDcyScyGc
129 127 128 subcld φe+cSDcyScyGyGc
130 129 abscld φe+cSDcyScyGyGc
131 100 simpld φe+cSDcyScyc/xB
132 simprll φe+cSDcyScye+
133 132 rpred φe+cSDcyScye
134 lelttr GyGcc/xBeGyGcc/xBc/xB<eGyGc<e
135 130 131 133 134 syl3anc φe+cSDcyScyGyGcc/xBc/xB<eGyGc<e
136 125 135 mpand φe+cSDcyScyc/xB<eGyGc<e
137 103 136 sylbid φe+cSDcyScyc/xB<eGyGc<e
138 80 137 syld φe+cSDcyScyxScxB<eGyGc<e
139 138 anassrs φe+cSDcyScyxScxB<eGyGc<e
140 139 expr φe+cSDcyScyxScxB<eGyGc<e
141 140 com23 φe+cSDcySxScxB<ecyGyGc<e
142 141 ralrimdva φe+cSDcxScxB<eyScyGyGc<e
143 142 61 jctild φe+cSDcxScxB<ecSyScyGyGc<e
144 143 anassrs φe+cSDcxScxB<ecSyScyGyGc<e
145 60 144 syldan φe+cifDT+1T+1D+∞xScxB<ecSyScyGyGc<e
146 145 expimpd φe+cifDT+1T+1D+∞xScxB<ecSyScyGyGc<e
147 146 reximdv2 φe+cifDT+1T+1D+∞xScxB<ecSyScyGyGc<e
148 39 147 sylbird φe+cxScxB<ecSyScyGyGc<e
149 148 ralimdva φe+cxScxB<ee+cSyScyGyGc<e
150 32 149 mpd φe+cSyScyGyGc<e
151 17 21 28 150 caucvgr φGdom