Metamath Proof Explorer


Theorem dya2icoseg

Description: For any point and any closed-below, open-above interval of RR centered on that point, there is a closed-below open-above dyadic rational interval which contains that point and is included in the original interval. (Contributed by Thierry Arnoux, 19-Sep-2017)

Ref Expression
Hypotheses sxbrsiga.0 J=topGenran.
dya2ioc.1 I=x,nx2nx+12n
dya2icoseg.1 N=1log2D
Assertion dya2icoseg XD+branIXbbXDX+D

Proof

Step Hyp Ref Expression
1 sxbrsiga.0 J=topGenran.
2 dya2ioc.1 I=x,nx2nx+12n
3 dya2icoseg.1 N=1log2D
4 ovex x2nx+12nV
5 2 4 fnmpoi IFn×
6 5 a1i XD+IFn×
7 simpl XD+X
8 2rp 2+
9 1red D+1
10 2z 2
11 uzid 222
12 10 11 ax-mp 22
13 relogbzcl 22D+log2D
14 12 13 mpan D+log2D
15 9 14 resubcld D+1log2D
16 15 flcld D+1log2D
17 3 16 eqeltrid D+N
18 rpexpcl 2+N2N+
19 18 rpred 2+N2N
20 8 17 19 sylancr D+2N
21 20 adantl XD+2N
22 7 21 remulcld XD+X2N
23 22 flcld XD+X2N
24 17 adantl XD+N
25 fnovrn IFn×X2NNX2NINranI
26 6 23 24 25 syl3anc XD+X2NINranI
27 23 zred XD+X2N
28 8 24 18 sylancr XD+2N+
29 fllelt X2NX2NX2NX2N<X2N+1
30 22 29 syl XD+X2NX2NX2N<X2N+1
31 30 simpld XD+X2NX2N
32 27 22 28 31 lediv1dd XD+X2N2NX2N2N
33 7 recnd XD+X
34 21 recnd XD+2N
35 2cnd XD+2
36 2ne0 20
37 36 a1i XD+20
38 35 37 24 expne0d XD+2N0
39 33 34 38 divcan4d XD+X2N2N=X
40 32 39 breqtrd XD+X2N2NX
41 1red XD+1
42 27 41 readdcld XD+X2N+1
43 30 simprd XD+X2N<X2N+1
44 22 42 28 43 ltdiv1dd XD+X2N2N<X2N+12N
45 39 44 eqbrtrrd XD+X<X2N+12N
46 27 21 38 redivcld XD+X2N2N
47 42 21 38 redivcld XD+X2N+12N
48 47 rexrd XD+X2N+12N*
49 elico2 X2N2NX2N+12N*XX2N2NX2N+12NXX2N2NXX<X2N+12N
50 46 48 49 syl2anc XD+XX2N2NX2N+12NXX2N2NXX<X2N+12N
51 7 40 45 50 mpbir3and XD+XX2N2NX2N+12N
52 1 2 dya2iocival NX2NX2NIN=X2N2NX2N+12N
53 24 23 52 syl2anc XD+X2NIN=X2N2NX2N+12N
54 51 53 eleqtrrd XD+XX2NIN
55 simpr XD+D+
56 55 rpred XD+D
57 7 56 resubcld XD+XD
58 57 rexrd XD+XD*
59 7 56 readdcld XD+X+D
60 59 rexrd XD+X+D*
61 21 38 rereccld XD+12N
62 7 61 resubcld XD+X12N
63 3 oveq2i 2N=21log2D
64 63 oveq2i 12N=121log2D
65 dya2ub D+121log2D<D
66 65 adantl XD+121log2D<D
67 64 66 eqbrtrid XD+12N<D
68 61 56 7 67 ltsub2dd XD+XD<X12N
69 33 34 mulcld XD+X2N
70 1cnd XD+1
71 69 70 34 38 divsubdird XD+X2N12N=X2N2N12N
72 39 oveq1d XD+X2N2N12N=X12N
73 71 72 eqtrd XD+X2N12N=X12N
74 22 41 resubcld XD+X2N1
75 22 42 41 43 ltsub1dd XD+X2N1<X2N+1-1
76 27 recnd XD+X2N
77 76 70 pncand XD+X2N+1-1=X2N
78 75 77 breqtrd XD+X2N1<X2N
79 74 27 78 ltled XD+X2N1X2N
80 74 27 28 79 lediv1dd XD+X2N12NX2N2N
81 73 80 eqbrtrrd XD+X12NX2N2N
82 57 62 46 68 81 ltletrd XD+XD<X2N2N
83 7 61 readdcld XD+X+12N
84 22 41 readdcld XD+X2N+1
85 27 22 41 31 leadd1dd XD+X2N+1X2N+1
86 42 84 28 85 lediv1dd XD+X2N+12NX2N+12N
87 69 70 34 38 divdird XD+X2N+12N=X2N2N+12N
88 39 oveq1d XD+X2N2N+12N=X+12N
89 87 88 eqtrd XD+X2N+12N=X+12N
90 86 89 breqtrd XD+X2N+12NX+12N
91 61 56 7 67 ltadd2dd XD+X+12N<X+D
92 47 83 59 90 91 lelttrd XD+X2N+12N<X+D
93 47 59 92 ltled XD+X2N+12NX+D
94 icossioo XD*X+D*XD<X2N2NX2N+12NX+DX2N2NX2N+12NXDX+D
95 58 60 82 93 94 syl22anc XD+X2N2NX2N+12NXDX+D
96 53 95 eqsstrd XD+X2NINXDX+D
97 eleq2 b=X2NINXbXX2NIN
98 sseq1 b=X2NINbXDX+DX2NINXDX+D
99 97 98 anbi12d b=X2NINXbbXDX+DXX2NINX2NINXDX+D
100 99 rspcev X2NINranIXX2NINX2NINXDX+DbranIXbbXDX+D
101 26 54 96 100 syl12anc XD+branIXbbXDX+D