Metamath Proof Explorer


Theorem efgsp1

Description: If F is an extension sequence and A is an extension of the last element of F , then F + <" A "> is an extension sequence. (Contributed by Mario Carneiro, 1-Oct-2015)

Ref Expression
Hypotheses efgval.w W=IWordI×2𝑜
efgval.r ˙=~FGI
efgval2.m M=yI,z2𝑜y1𝑜z
efgval2.t T=vWn0v,wI×2𝑜vsplicenn⟨“wMw”⟩
efgred.d D=WxWranTx
efgred.s S=mtWordW|t0Dk1..^ttkranTtk1mm1
Assertion efgsp1 FdomSAranTSFF++⟨“A”⟩domS

Proof

Step Hyp Ref Expression
1 efgval.w W=IWordI×2𝑜
2 efgval.r ˙=~FGI
3 efgval2.m M=yI,z2𝑜y1𝑜z
4 efgval2.t T=vWn0v,wI×2𝑜vsplicenn⟨“wMw”⟩
5 efgred.d D=WxWranTx
6 efgred.s S=mtWordW|t0Dk1..^ttkranTtk1mm1
7 1 2 3 4 5 6 efgsdm FdomSFWordWF0Di1..^FFiranTFi1
8 7 simp1bi FdomSFWordW
9 8 eldifad FdomSFWordW
10 1 2 3 4 5 6 efgsf S:tWordW|t0Dk1..^ttkranTtk1W
11 10 fdmi domS=tWordW|t0Dk1..^ttkranTtk1
12 11 feq2i S:domSWS:tWordW|t0Dk1..^ttkranTtk1W
13 10 12 mpbir S:domSW
14 13 ffvelcdmi FdomSSFW
15 1 2 3 4 efgtf SFWTSF=a0SF,iI×2𝑜SFspliceaa⟨“iMi”⟩TSF:0SF×I×2𝑜W
16 14 15 syl FdomSTSF=a0SF,iI×2𝑜SFspliceaa⟨“iMi”⟩TSF:0SF×I×2𝑜W
17 16 simprd FdomSTSF:0SF×I×2𝑜W
18 17 frnd FdomSranTSFW
19 18 sselda FdomSAranTSFAW
20 19 s1cld FdomSAranTSF⟨“A”⟩WordW
21 ccatcl FWordW⟨“A”⟩WordWF++⟨“A”⟩WordW
22 9 20 21 syl2an2r FdomSAranTSFF++⟨“A”⟩WordW
23 ccatws1n0 FWordWF++⟨“A”⟩
24 9 23 syl FdomSF++⟨“A”⟩
25 24 adantr FdomSAranTSFF++⟨“A”⟩
26 eldifsn F++⟨“A”⟩WordWF++⟨“A”⟩WordWF++⟨“A”⟩
27 22 25 26 sylanbrc FdomSAranTSFF++⟨“A”⟩WordW
28 9 adantr FdomSAranTSFFWordW
29 eldifsni FWordWF
30 8 29 syl FdomSF
31 len0nnbi FWordWFF
32 9 31 syl FdomSFF
33 30 32 mpbid FdomSF
34 lbfzo0 00..^FF
35 33 34 sylibr FdomS00..^F
36 35 adantr FdomSAranTSF00..^F
37 ccatval1 FWordW⟨“A”⟩WordW00..^FF++⟨“A”⟩0=F0
38 28 20 36 37 syl3anc FdomSAranTSFF++⟨“A”⟩0=F0
39 7 simp2bi FdomSF0D
40 39 adantr FdomSAranTSFF0D
41 38 40 eqeltrd FdomSAranTSFF++⟨“A”⟩0D
42 7 simp3bi FdomSi1..^FFiranTFi1
43 42 adantr FdomSAranTSFi1..^FFiranTFi1
44 fzo0ss1 1..^F0..^F
45 44 sseli i1..^Fi0..^F
46 ccatval1 FWordW⟨“A”⟩WordWi0..^FF++⟨“A”⟩i=Fi
47 45 46 syl3an3 FWordW⟨“A”⟩WordWi1..^FF++⟨“A”⟩i=Fi
48 elfzoel2 i1..^FF
49 peano2zm FF1
50 48 49 syl i1..^FF1
51 48 zred i1..^FF
52 51 lem1d i1..^FF1F
53 eluz2 FF1F1FF1F
54 50 48 52 53 syl3anbrc i1..^FFF1
55 fzoss2 FF10..^F10..^F
56 54 55 syl i1..^F0..^F10..^F
57 elfzo1elm1fzo0 i1..^Fi10..^F1
58 56 57 sseldd i1..^Fi10..^F
59 ccatval1 FWordW⟨“A”⟩WordWi10..^FF++⟨“A”⟩i1=Fi1
60 58 59 syl3an3 FWordW⟨“A”⟩WordWi1..^FF++⟨“A”⟩i1=Fi1
61 60 fveq2d FWordW⟨“A”⟩WordWi1..^FTF++⟨“A”⟩i1=TFi1
62 61 rneqd FWordW⟨“A”⟩WordWi1..^FranTF++⟨“A”⟩i1=ranTFi1
63 47 62 eleq12d FWordW⟨“A”⟩WordWi1..^FF++⟨“A”⟩iranTF++⟨“A”⟩i1FiranTFi1
64 63 3expa FWordW⟨“A”⟩WordWi1..^FF++⟨“A”⟩iranTF++⟨“A”⟩i1FiranTFi1
65 64 ralbidva FWordW⟨“A”⟩WordWi1..^FF++⟨“A”⟩iranTF++⟨“A”⟩i1i1..^FFiranTFi1
66 9 20 65 syl2an2r FdomSAranTSFi1..^FF++⟨“A”⟩iranTF++⟨“A”⟩i1i1..^FFiranTFi1
67 43 66 mpbird FdomSAranTSFi1..^FF++⟨“A”⟩iranTF++⟨“A”⟩i1
68 lencl FWordWF0
69 9 68 syl FdomSF0
70 69 nn0cnd FdomSF
71 70 addlidd FdomS0+F=F
72 71 fveq2d FdomSF++⟨“A”⟩0+F=F++⟨“A”⟩F
73 72 adantr FdomSAranTSFF++⟨“A”⟩0+F=F++⟨“A”⟩F
74 s1len ⟨“A”⟩=1
75 1nn 1
76 74 75 eqeltri ⟨“A”⟩
77 lbfzo0 00..^⟨“A”⟩⟨“A”⟩
78 76 77 mpbir 00..^⟨“A”⟩
79 78 a1i FdomSAranTSF00..^⟨“A”⟩
80 ccatval3 FWordW⟨“A”⟩WordW00..^⟨“A”⟩F++⟨“A”⟩0+F=⟨“A”⟩0
81 28 20 79 80 syl3anc FdomSAranTSFF++⟨“A”⟩0+F=⟨“A”⟩0
82 73 81 eqtr3d FdomSAranTSFF++⟨“A”⟩F=⟨“A”⟩0
83 simpr FdomSAranTSFAranTSF
84 s1fv AranTSF⟨“A”⟩0=A
85 84 adantl FdomSAranTSF⟨“A”⟩0=A
86 fzo0end FF10..^F
87 33 86 syl FdomSF10..^F
88 87 adantr FdomSAranTSFF10..^F
89 ccatval1 FWordW⟨“A”⟩WordWF10..^FF++⟨“A”⟩F1=FF1
90 28 20 88 89 syl3anc FdomSAranTSFF++⟨“A”⟩F1=FF1
91 1 2 3 4 5 6 efgsval FdomSSF=FF1
92 91 adantr FdomSAranTSFSF=FF1
93 90 92 eqtr4d FdomSAranTSFF++⟨“A”⟩F1=SF
94 93 fveq2d FdomSAranTSFTF++⟨“A”⟩F1=TSF
95 94 rneqd FdomSAranTSFranTF++⟨“A”⟩F1=ranTSF
96 83 85 95 3eltr4d FdomSAranTSF⟨“A”⟩0ranTF++⟨“A”⟩F1
97 82 96 eqeltrd FdomSAranTSFF++⟨“A”⟩FranTF++⟨“A”⟩F1
98 fvex FV
99 fveq2 i=FF++⟨“A”⟩i=F++⟨“A”⟩F
100 fvoveq1 i=FF++⟨“A”⟩i1=F++⟨“A”⟩F1
101 100 fveq2d i=FTF++⟨“A”⟩i1=TF++⟨“A”⟩F1
102 101 rneqd i=FranTF++⟨“A”⟩i1=ranTF++⟨“A”⟩F1
103 99 102 eleq12d i=FF++⟨“A”⟩iranTF++⟨“A”⟩i1F++⟨“A”⟩FranTF++⟨“A”⟩F1
104 98 103 ralsn iFF++⟨“A”⟩iranTF++⟨“A”⟩i1F++⟨“A”⟩FranTF++⟨“A”⟩F1
105 97 104 sylibr FdomSAranTSFiFF++⟨“A”⟩iranTF++⟨“A”⟩i1
106 ralunb i1..^FFF++⟨“A”⟩iranTF++⟨“A”⟩i1i1..^FF++⟨“A”⟩iranTF++⟨“A”⟩i1iFF++⟨“A”⟩iranTF++⟨“A”⟩i1
107 67 105 106 sylanbrc FdomSAranTSFi1..^FFF++⟨“A”⟩iranTF++⟨“A”⟩i1
108 ccatlen FWordW⟨“A”⟩WordWF++⟨“A”⟩=F+⟨“A”⟩
109 9 20 108 syl2an2r FdomSAranTSFF++⟨“A”⟩=F+⟨“A”⟩
110 74 oveq2i F+⟨“A”⟩=F+1
111 109 110 eqtrdi FdomSAranTSFF++⟨“A”⟩=F+1
112 111 oveq2d FdomSAranTSF1..^F++⟨“A”⟩=1..^F+1
113 nnuz =1
114 33 113 eleqtrdi FdomSF1
115 fzosplitsn F11..^F+1=1..^FF
116 114 115 syl FdomS1..^F+1=1..^FF
117 116 adantr FdomSAranTSF1..^F+1=1..^FF
118 112 117 eqtrd FdomSAranTSF1..^F++⟨“A”⟩=1..^FF
119 118 raleqdv FdomSAranTSFi1..^F++⟨“A”⟩F++⟨“A”⟩iranTF++⟨“A”⟩i1i1..^FFF++⟨“A”⟩iranTF++⟨“A”⟩i1
120 107 119 mpbird FdomSAranTSFi1..^F++⟨“A”⟩F++⟨“A”⟩iranTF++⟨“A”⟩i1
121 1 2 3 4 5 6 efgsdm F++⟨“A”⟩domSF++⟨“A”⟩WordWF++⟨“A”⟩0Di1..^F++⟨“A”⟩F++⟨“A”⟩iranTF++⟨“A”⟩i1
122 27 41 120 121 syl3anbrc FdomSAranTSFF++⟨“A”⟩domS