Metamath Proof Explorer


Theorem etransclem31

Description: The N -th derivative of H applied to Y . (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem31.s φS
etransclem31.x φXTopOpenfld𝑡S
etransclem31.p φP
etransclem31.m φM0
etransclem31.f F=xXxP1j=1MxjP
etransclem31.n φN0
etransclem31.h H=j0MxXxjifj=0P1P
etransclem31.c C=n0c0n0M|j=0Mcj=n
etransclem31.y φYX
Assertion etransclem31 φSDnFNY=cCNN!j=0Mcj!ifP1<c00P1!P-1-c0!YP-1-c0j=1MifP<cj0P!Pcj!YjPcj

Proof

Step Hyp Ref Expression
1 etransclem31.s φS
2 etransclem31.x φXTopOpenfld𝑡S
3 etransclem31.p φP
4 etransclem31.m φM0
5 etransclem31.f F=xXxP1j=1MxjP
6 etransclem31.n φN0
7 etransclem31.h H=j0MxXxjifj=0P1P
8 etransclem31.c C=n0c0n0M|j=0Mcj=n
9 etransclem31.y φYX
10 1 2 3 4 5 6 7 8 etransclem30 φSDnFN=xXcCNN!j=0Mcj!j=0MSDnHjcjx
11 fveq2 x=YSDnHjcjx=SDnHjcjY
12 11 prodeq2ad x=Yj=0MSDnHjcjx=j=0MSDnHjcjY
13 12 oveq2d x=YN!j=0Mcj!j=0MSDnHjcjx=N!j=0Mcj!j=0MSDnHjcjY
14 13 sumeq2sdv x=YcCNN!j=0Mcj!j=0MSDnHjcjx=cCNN!j=0Mcj!j=0MSDnHjcjY
15 14 adantl φx=YcCNN!j=0Mcj!j=0MSDnHjcjx=cCNN!j=0Mcj!j=0MSDnHjcjY
16 8 6 etransclem16 φCNFin
17 6 faccld φN!
18 17 nncnd φN!
19 18 adantr φcCNN!
20 fzfid φcCN0MFin
21 fzssnn0 0N0
22 ssrab2 c0N0M|j=0Mcj=N0N0M
23 simpr φcCNcCN
24 8 6 etransclem12 φCN=c0N0M|j=0Mcj=N
25 24 adantr φcCNCN=c0N0M|j=0Mcj=N
26 23 25 eleqtrd φcCNcc0N0M|j=0Mcj=N
27 22 26 sselid φcCNc0N0M
28 27 adantr φcCNj0Mc0N0M
29 elmapi c0N0Mc:0M0N
30 28 29 syl φcCNj0Mc:0M0N
31 simpr φcCNj0Mj0M
32 30 31 ffvelcdmd φcCNj0Mcj0N
33 21 32 sselid φcCNj0Mcj0
34 33 faccld φcCNj0Mcj!
35 34 nncnd φcCNj0Mcj!
36 20 35 fprodcl φcCNj=0Mcj!
37 34 nnne0d φcCNj0Mcj!0
38 20 35 37 fprodn0 φcCNj=0Mcj!0
39 19 36 38 divcld φcCNN!j=0Mcj!
40 1 ad2antrr φcCNj0MS
41 2 ad2antrr φcCNj0MXTopOpenfld𝑡S
42 3 ad2antrr φcCNj0MP
43 etransclem5 j0MxXxjifj=0P1P=k0MyXykifk=0P1P
44 7 43 eqtri H=k0MyXykifk=0P1P
45 40 41 42 44 31 33 etransclem20 φcCNj0MSDnHjcj:X
46 9 ad2antrr φcCNj0MYX
47 45 46 ffvelcdmd φcCNj0MSDnHjcjY
48 20 47 fprodcl φcCNj=0MSDnHjcjY
49 39 48 mulcld φcCNN!j=0Mcj!j=0MSDnHjcjY
50 16 49 fsumcl φcCNN!j=0Mcj!j=0MSDnHjcjY
51 10 15 9 50 fvmptd φSDnFNY=cCNN!j=0Mcj!j=0MSDnHjcjY
52 40 41 42 44 31 33 46 etransclem21 φcCNj0MSDnHjcjY=ififj=0P1P<cj0ifj=0P1P!ifj=0P1Pcj!Yjifj=0P1Pcj
53 52 prodeq2dv φcCNj=0MSDnHjcjY=j=0Mififj=0P1P<cj0ifj=0P1P!ifj=0P1Pcj!Yjifj=0P1Pcj
54 nn0uz 0=0
55 4 54 eleqtrdi φM0
56 55 adantr φcCNM0
57 52 47 eqeltrrd φcCNj0Mififj=0P1P<cj0ifj=0P1P!ifj=0P1Pcj!Yjifj=0P1Pcj
58 iftrue j=0ifj=0P1P=P1
59 fveq2 j=0cj=c0
60 58 59 breq12d j=0ifj=0P1P<cjP1<c0
61 58 fveq2d j=0ifj=0P1P!=P1!
62 58 59 oveq12d j=0ifj=0P1Pcj=P-1-c0
63 62 fveq2d j=0ifj=0P1Pcj!=P-1-c0!
64 61 63 oveq12d j=0ifj=0P1P!ifj=0P1Pcj!=P1!P-1-c0!
65 oveq2 j=0Yj=Y0
66 65 62 oveq12d j=0Yjifj=0P1Pcj=Y0P-1-c0
67 64 66 oveq12d j=0ifj=0P1P!ifj=0P1Pcj!Yjifj=0P1Pcj=P1!P-1-c0!Y0P-1-c0
68 60 67 ifbieq2d j=0ififj=0P1P<cj0ifj=0P1P!ifj=0P1Pcj!Yjifj=0P1Pcj=ifP1<c00P1!P-1-c0!Y0P-1-c0
69 56 57 68 fprod1p φcCNj=0Mififj=0P1P<cj0ifj=0P1P!ifj=0P1Pcj!Yjifj=0P1Pcj=ifP1<c00P1!P-1-c0!Y0P-1-c0j=0+1Mififj=0P1P<cj0ifj=0P1P!ifj=0P1Pcj!Yjifj=0P1Pcj
70 1 2 dvdmsscn φX
71 70 9 sseldd φY
72 71 subid1d φY0=Y
73 72 oveq1d φY0P-1-c0=YP-1-c0
74 73 oveq2d φP1!P-1-c0!Y0P-1-c0=P1!P-1-c0!YP-1-c0
75 74 ifeq2d φifP1<c00P1!P-1-c0!Y0P-1-c0=ifP1<c00P1!P-1-c0!YP-1-c0
76 0p1e1 0+1=1
77 76 oveq1i 0+1M=1M
78 77 prodeq1i j=0+1Mififj=0P1P<cj0ifj=0P1P!ifj=0P1Pcj!Yjifj=0P1Pcj=j=1Mififj=0P1P<cj0ifj=0P1P!ifj=0P1Pcj!Yjifj=0P1Pcj
79 0red j1M0
80 1red j1M1
81 elfzelz j1Mj
82 81 zred j1Mj
83 0lt1 0<1
84 83 a1i j1M0<1
85 elfzle1 j1M1j
86 79 80 82 84 85 ltletrd j1M0<j
87 86 gt0ne0d j1Mj0
88 87 neneqd j1M¬j=0
89 88 iffalsed j1Mifj=0P1P=P
90 89 breq1d j1Mifj=0P1P<cjP<cj
91 89 fveq2d j1Mifj=0P1P!=P!
92 89 oveq1d j1Mifj=0P1Pcj=Pcj
93 92 fveq2d j1Mifj=0P1Pcj!=Pcj!
94 91 93 oveq12d j1Mifj=0P1P!ifj=0P1Pcj!=P!Pcj!
95 92 oveq2d j1MYjifj=0P1Pcj=YjPcj
96 94 95 oveq12d j1Mifj=0P1P!ifj=0P1Pcj!Yjifj=0P1Pcj=P!Pcj!YjPcj
97 90 96 ifbieq2d j1Mififj=0P1P<cj0ifj=0P1P!ifj=0P1Pcj!Yjifj=0P1Pcj=ifP<cj0P!Pcj!YjPcj
98 97 prodeq2i j=1Mififj=0P1P<cj0ifj=0P1P!ifj=0P1Pcj!Yjifj=0P1Pcj=j=1MifP<cj0P!Pcj!YjPcj
99 78 98 eqtri j=0+1Mififj=0P1P<cj0ifj=0P1P!ifj=0P1Pcj!Yjifj=0P1Pcj=j=1MifP<cj0P!Pcj!YjPcj
100 99 a1i φj=0+1Mififj=0P1P<cj0ifj=0P1P!ifj=0P1Pcj!Yjifj=0P1Pcj=j=1MifP<cj0P!Pcj!YjPcj
101 75 100 oveq12d φifP1<c00P1!P-1-c0!Y0P-1-c0j=0+1Mififj=0P1P<cj0ifj=0P1P!ifj=0P1Pcj!Yjifj=0P1Pcj=ifP1<c00P1!P-1-c0!YP-1-c0j=1MifP<cj0P!Pcj!YjPcj
102 101 adantr φcCNifP1<c00P1!P-1-c0!Y0P-1-c0j=0+1Mififj=0P1P<cj0ifj=0P1P!ifj=0P1Pcj!Yjifj=0P1Pcj=ifP1<c00P1!P-1-c0!YP-1-c0j=1MifP<cj0P!Pcj!YjPcj
103 53 69 102 3eqtrd φcCNj=0MSDnHjcjY=ifP1<c00P1!P-1-c0!YP-1-c0j=1MifP<cj0P!Pcj!YjPcj
104 103 oveq2d φcCNN!j=0Mcj!j=0MSDnHjcjY=N!j=0Mcj!ifP1<c00P1!P-1-c0!YP-1-c0j=1MifP<cj0P!Pcj!YjPcj
105 104 sumeq2dv φcCNN!j=0Mcj!j=0MSDnHjcjY=cCNN!j=0Mcj!ifP1<c00P1!P-1-c0!YP-1-c0j=1MifP<cj0P!Pcj!YjPcj
106 51 105 eqtrd φSDnFNY=cCNN!j=0Mcj!ifP1<c00P1!P-1-c0!YP-1-c0j=1MifP<cj0P!Pcj!YjPcj