Metamath Proof Explorer


Theorem fourierdlem16

Description: The coefficients of the fourier series are integrable and reals. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem16.f φF:
fourierdlem16.c C=ππ
fourierdlem16.fibl φFC𝐿1
fourierdlem16.a A=n0CFxcosnxdxπ
fourierdlem16.n φN0
Assertion fourierdlem16 φANxCFx𝐿1CFxcosNxdx

Proof

Step Hyp Ref Expression
1 fourierdlem16.f φF:
2 fourierdlem16.c C=ππ
3 fourierdlem16.fibl φFC𝐿1
4 fourierdlem16.a A=n0CFxcosnxdxπ
5 fourierdlem16.n φN0
6 1 adantr φxCF:
7 ioossre ππ
8 id xCxC
9 8 2 eleqtrdi xCxππ
10 7 9 sselid xCx
11 10 adantl φxCx
12 6 11 ffvelcdmd φxCFx
13 12 adantlr φn0xCFx
14 nn0re n0n
15 14 adantr n0xCn
16 10 adantl n0xCx
17 15 16 remulcld n0xCnx
18 17 recoscld n0xCcosnx
19 18 adantll φn0xCcosnx
20 13 19 remulcld φn0xCFxcosnx
21 ioombl ππdomvol
22 2 21 eqeltri Cdomvol
23 22 a1i φn0Cdomvol
24 eqidd φn0xCcosnx=xCcosnx
25 eqidd φn0xCFx=xCFx
26 23 19 13 24 25 offval2 φn0xCcosnx×fxCFx=xCcosnxFx
27 19 recnd φn0xCcosnx
28 13 recnd φn0xCFx
29 27 28 mulcomd φn0xCcosnxFx=Fxcosnx
30 29 mpteq2dva φn0xCcosnxFx=xCFxcosnx
31 26 30 eqtr2d φn0xCFxcosnx=xCcosnx×fxCFx
32 coscn cos:cn
33 32 a1i n0cos:cn
34 2 7 eqsstri C
35 ax-resscn
36 34 35 sstri C
37 36 a1i n0C
38 14 recnd n0n
39 ssid
40 39 a1i n0
41 37 38 40 constcncfg n0xCn:Ccn
42 cncfmptid CxCx:Ccn
43 36 39 42 mp2an xCx:Ccn
44 43 a1i n0xCx:Ccn
45 41 44 mulcncf n0xCnx:Ccn
46 33 45 cncfmpt1f n0xCcosnx:Ccn
47 cnmbf CdomvolxCcosnx:CcnxCcosnxMblFn
48 22 46 47 sylancr n0xCcosnxMblFn
49 48 adantl φn0xCcosnxMblFn
50 1 feqmptd φF=xFx
51 50 reseq1d φFC=xFxC
52 resmpt CxFxC=xCFx
53 34 52 mp1i φxFxC=xCFx
54 51 53 eqtr2d φxCFx=FC
55 54 3 eqeltrd φxCFx𝐿1
56 55 adantr φn0xCFx𝐿1
57 1re 1
58 simpr n0ydomxCcosnxydomxCcosnx
59 nfv xn0
60 nfmpt1 _xxCcosnx
61 60 nfdm _xdomxCcosnx
62 61 nfcri xydomxCcosnx
63 59 62 nfan xn0ydomxCcosnx
64 18 ex n0xCcosnx
65 64 adantr n0ydomxCcosnxxCcosnx
66 63 65 ralrimi n0ydomxCcosnxxCcosnx
67 dmmptg xCcosnxdomxCcosnx=C
68 66 67 syl n0ydomxCcosnxdomxCcosnx=C
69 58 68 eleqtrd n0ydomxCcosnxyC
70 eqidd n0yCxCcosnx=xCcosnx
71 oveq2 x=ynx=ny
72 71 fveq2d x=ycosnx=cosny
73 72 adantl n0yCx=ycosnx=cosny
74 simpr n0yCyC
75 14 adantr n0yCn
76 34 74 sselid n0yCy
77 75 76 remulcld n0yCny
78 77 recoscld n0yCcosny
79 70 73 74 78 fvmptd n0yCxCcosnxy=cosny
80 79 fveq2d n0yCxCcosnxy=cosny
81 abscosbd nycosny1
82 77 81 syl n0yCcosny1
83 80 82 eqbrtrd n0yCxCcosnxy1
84 69 83 syldan n0ydomxCcosnxxCcosnxy1
85 84 ralrimiva n0ydomxCcosnxxCcosnxy1
86 breq2 b=1xCcosnxybxCcosnxy1
87 86 ralbidv b=1ydomxCcosnxxCcosnxybydomxCcosnxxCcosnxy1
88 87 rspcev 1ydomxCcosnxxCcosnxy1bydomxCcosnxxCcosnxyb
89 57 85 88 sylancr n0bydomxCcosnxxCcosnxyb
90 89 adantl φn0bydomxCcosnxxCcosnxyb
91 bddmulibl xCcosnxMblFnxCFx𝐿1bydomxCcosnxxCcosnxybxCcosnx×fxCFx𝐿1
92 49 56 90 91 syl3anc φn0xCcosnx×fxCFx𝐿1
93 31 92 eqeltrd φn0xCFxcosnx𝐿1
94 20 93 itgrecl φn0CFxcosnxdx
95 pire π
96 95 a1i φn0π
97 0re 0
98 pipos 0<π
99 97 98 gtneii π0
100 99 a1i φn0π0
101 94 96 100 redivcld φn0CFxcosnxdxπ
102 101 4 fmptd φA:0
103 102 5 ffvelcdmd φAN
104 5 ancli φφN0
105 eleq1 n=Nn0N0
106 105 anbi2d n=Nφn0φN0
107 simpl n=NxCn=N
108 107 oveq1d n=NxCnx=Nx
109 108 fveq2d n=NxCcosnx=cosNx
110 109 oveq2d n=NxCFxcosnx=FxcosNx
111 110 itgeq2dv n=NCFxcosnxdx=CFxcosNxdx
112 111 eleq1d n=NCFxcosnxdxCFxcosNxdx
113 106 112 imbi12d n=Nφn0CFxcosnxdxφN0CFxcosNxdx
114 113 94 vtoclg N0φN0CFxcosNxdx
115 5 104 114 sylc φCFxcosNxdx
116 103 55 115 jca31 φANxCFx𝐿1CFxcosNxdx