Metamath Proof Explorer


Theorem fourierdlem21

Description: The coefficients of the fourier series are integrable and reals. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem21.f φF:
fourierdlem21.c C=ππ
fourierdlem21.fibl φFC𝐿1
fourierdlem21.b B=nCFxsinnxdxπ
fourierdlem21.n φN
Assertion fourierdlem21 φBNxCFxsinNx𝐿1CFxsinNxdx

Proof

Step Hyp Ref Expression
1 fourierdlem21.f φF:
2 fourierdlem21.c C=ππ
3 fourierdlem21.fibl φFC𝐿1
4 fourierdlem21.b B=nCFxsinnxdxπ
5 fourierdlem21.n φN
6 nnnn0 nn0
7 1 adantr φxCF:
8 ioossre ππ
9 id xCxC
10 9 2 eleqtrdi xCxππ
11 8 10 sselid xCx
12 11 adantl φxCx
13 7 12 ffvelcdmd φxCFx
14 13 adantlr φn0xCFx
15 nn0re n0n
16 15 adantr n0xCn
17 11 adantl n0xCx
18 16 17 remulcld n0xCnx
19 18 resincld n0xCsinnx
20 19 adantll φn0xCsinnx
21 14 20 remulcld φn0xCFxsinnx
22 ioombl ππdomvol
23 2 22 eqeltri Cdomvol
24 23 a1i φn0Cdomvol
25 eqidd φn0xCsinnx=xCsinnx
26 eqidd φn0xCFx=xCFx
27 24 20 14 25 26 offval2 φn0xCsinnx×fxCFx=xCsinnxFx
28 20 recnd φn0xCsinnx
29 14 recnd φn0xCFx
30 28 29 mulcomd φn0xCsinnxFx=Fxsinnx
31 30 mpteq2dva φn0xCsinnxFx=xCFxsinnx
32 27 31 eqtr2d φn0xCFxsinnx=xCsinnx×fxCFx
33 sincn sin:cn
34 33 a1i φn0sin:cn
35 2 8 eqsstri C
36 ax-resscn
37 35 36 sstri C
38 37 a1i n0C
39 15 recnd n0n
40 ssid
41 40 a1i n0
42 38 39 41 constcncfg n0xCn:Ccn
43 38 41 idcncfg n0xCx:Ccn
44 42 43 mulcncf n0xCnx:Ccn
45 44 adantl φn0xCnx:Ccn
46 34 45 cncfmpt1f φn0xCsinnx:Ccn
47 cnmbf CdomvolxCsinnx:CcnxCsinnxMblFn
48 23 46 47 sylancr φn0xCsinnxMblFn
49 1 feqmptd φF=xFx
50 49 reseq1d φFC=xFxC
51 resmpt CxFxC=xCFx
52 35 51 mp1i φxFxC=xCFx
53 50 52 eqtr2d φxCFx=FC
54 53 3 eqeltrd φxCFx𝐿1
55 54 adantr φn0xCFx𝐿1
56 1re 1
57 simpr n0ydomxCsinnxydomxCsinnx
58 nfv xn0
59 nfmpt1 _xxCsinnx
60 59 nfdm _xdomxCsinnx
61 60 nfcri xydomxCsinnx
62 58 61 nfan xn0ydomxCsinnx
63 19 ex n0xCsinnx
64 63 adantr n0ydomxCsinnxxCsinnx
65 62 64 ralrimi n0ydomxCsinnxxCsinnx
66 dmmptg xCsinnxdomxCsinnx=C
67 65 66 syl n0ydomxCsinnxdomxCsinnx=C
68 57 67 eleqtrd n0ydomxCsinnxyC
69 eqidd n0yCxCsinnx=xCsinnx
70 oveq2 x=ynx=ny
71 70 fveq2d x=ysinnx=sinny
72 71 adantl n0yCx=ysinnx=sinny
73 simpr n0yCyC
74 15 adantr n0yCn
75 35 73 sselid n0yCy
76 74 75 remulcld n0yCny
77 76 resincld n0yCsinny
78 69 72 73 77 fvmptd n0yCxCsinnxy=sinny
79 78 fveq2d n0yCxCsinnxy=sinny
80 abssinbd nysinny1
81 76 80 syl n0yCsinny1
82 79 81 eqbrtrd n0yCxCsinnxy1
83 68 82 syldan n0ydomxCsinnxxCsinnxy1
84 83 ralrimiva n0ydomxCsinnxxCsinnxy1
85 breq2 b=1xCsinnxybxCsinnxy1
86 85 ralbidv b=1ydomxCsinnxxCsinnxybydomxCsinnxxCsinnxy1
87 86 rspcev 1ydomxCsinnxxCsinnxy1bydomxCsinnxxCsinnxyb
88 56 84 87 sylancr n0bydomxCsinnxxCsinnxyb
89 88 adantl φn0bydomxCsinnxxCsinnxyb
90 bddmulibl xCsinnxMblFnxCFx𝐿1bydomxCsinnxxCsinnxybxCsinnx×fxCFx𝐿1
91 48 55 89 90 syl3anc φn0xCsinnx×fxCFx𝐿1
92 32 91 eqeltrd φn0xCFxsinnx𝐿1
93 21 92 itgrecl φn0CFxsinnxdx
94 6 93 sylan2 φnCFxsinnxdx
95 pire π
96 95 a1i φnπ
97 0re 0
98 pipos 0<π
99 97 98 gtneii π0
100 99 a1i φnπ0
101 94 96 100 redivcld φnCFxsinnxdxπ
102 101 4 fmptd φB:
103 102 5 ffvelcdmd φBN
104 5 nnnn0d φN0
105 eleq1 n=Nn0N0
106 105 anbi2d n=Nφn0φN0
107 simpl n=NxCn=N
108 107 oveq1d n=NxCnx=Nx
109 108 fveq2d n=NxCsinnx=sinNx
110 109 oveq2d n=NxCFxsinnx=FxsinNx
111 110 mpteq2dva n=NxCFxsinnx=xCFxsinNx
112 111 eleq1d n=NxCFxsinnx𝐿1xCFxsinNx𝐿1
113 106 112 imbi12d n=Nφn0xCFxsinnx𝐿1φN0xCFxsinNx𝐿1
114 113 92 vtoclg N0φN0xCFxsinNx𝐿1
115 114 anabsi7 φN0xCFxsinNx𝐿1
116 104 115 mpdan φxCFxsinNx𝐿1
117 5 ancli φφN
118 eleq1 n=NnN
119 118 anbi2d n=NφnφN
120 110 itgeq2dv n=NCFxsinnxdx=CFxsinNxdx
121 120 eleq1d n=NCFxsinnxdxCFxsinNxdx
122 119 121 imbi12d n=NφnCFxsinnxdxφNCFxsinNxdx
123 122 94 vtoclg NφNCFxsinNxdx
124 5 117 123 sylc φCFxsinNxdx
125 103 116 124 jca31 φBNxCFxsinNx𝐿1CFxsinNxdx