Metamath Proof Explorer


Theorem fourierdlem31

Description: If A is finite and for any element in A there is a number m such that a property holds for all numbers larger than m , then there is a number n such that the property holds for all numbers larger than n and for all elements in A . (Contributed by Glauco Siliprandi, 11-Dec-2019) (Revised by AV, 29-Sep-2020)

Ref Expression
Hypotheses fourierdlem31.i iφ
fourierdlem31.r rφ
fourierdlem31.iv _iV
fourierdlem31.a φAFin
fourierdlem31.exm φiAmrm+∞χ
fourierdlem31.m M=m|rm+∞χ
fourierdlem31.v V=iAsupM<
fourierdlem31.n N=supranV<
Assertion fourierdlem31 φnrn+∞iAχ

Proof

Step Hyp Ref Expression
1 fourierdlem31.i iφ
2 fourierdlem31.r rφ
3 fourierdlem31.iv _iV
4 fourierdlem31.a φAFin
5 fourierdlem31.exm φiAmrm+∞χ
6 fourierdlem31.m M=m|rm+∞χ
7 fourierdlem31.v V=iAsupM<
8 fourierdlem31.n N=supranV<
9 1nn 1
10 rzal A=iAχ
11 10 ralrimivw A=r1+∞iAχ
12 oveq1 n=1n+∞=1+∞
13 12 raleqdv n=1rn+∞iAχr1+∞iAχ
14 13 rspcev 1r1+∞iAχnrn+∞iAχ
15 9 11 14 sylancr A=nrn+∞iAχ
16 15 adantl φA=nrn+∞iAχ
17 6 a1i φiAM=m|rm+∞χ
18 17 infeq1d φiAsupM<=supm|rm+∞χ<
19 ssrab2 m|rm+∞χ
20 nnuz =1
21 19 20 sseqtri m|rm+∞χ1
22 5 r19.21bi φiAmrm+∞χ
23 rabn0 m|rm+∞χmrm+∞χ
24 22 23 sylibr φiAm|rm+∞χ
25 infssuzcl m|rm+∞χ1m|rm+∞χsupm|rm+∞χ<m|rm+∞χ
26 21 24 25 sylancr φiAsupm|rm+∞χ<m|rm+∞χ
27 19 26 sselid φiAsupm|rm+∞χ<
28 18 27 eqeltrd φiAsupM<
29 1 7 28 rnmptssd φranV
30 29 adantr φ¬A=ranV
31 ltso <Or
32 31 a1i φ¬A=<Or
33 mptfi AFiniAsupM<Fin
34 4 33 syl φiAsupM<Fin
35 7 34 eqeltrid φVFin
36 rnfi VFinranVFin
37 35 36 syl φranVFin
38 37 adantr φ¬A=ranVFin
39 neqne ¬A=A
40 n0 AiiA
41 39 40 sylib ¬A=iiA
42 41 adantl φ¬A=iiA
43 nfv i¬A=
44 1 43 nfan iφ¬A=
45 3 nfrn _iranV
46 nfcv _i
47 45 46 nfne iranV
48 simpr φiAiA
49 7 elrnmpt1 iAsupM<supM<ranV
50 48 28 49 syl2anc φiAsupM<ranV
51 50 ne0d φiAranV
52 51 ex φiAranV
53 52 adantr φ¬A=iAranV
54 44 47 53 exlimd φ¬A=iiAranV
55 42 54 mpd φ¬A=ranV
56 nnssre
57 30 56 sstrdi φ¬A=ranV
58 fisupcl <OrranVFinranVranVsupranV<ranV
59 32 38 55 57 58 syl13anc φ¬A=supranV<ranV
60 30 59 sseldd φ¬A=supranV<
61 8 60 eqeltrid φ¬A=N
62 nfcv _i
63 nfcv _i<
64 45 62 63 nfsup _isupranV<
65 8 64 nfcxfr _iN
66 nfcv _i.
67 nfcv _i+∞
68 65 66 67 nfov _iN+∞
69 68 nfcri irN+∞
70 1 69 nfan iφrN+∞
71 7 fvmpt2 iAsupM<Vi=supM<
72 48 28 71 syl2anc φiAVi=supM<
73 28 nnxrd φiAsupM<*
74 72 73 eqeltrd φiAVi*
75 74 adantr φiArN+∞Vi*
76 pnfxr +∞*
77 76 a1i φiArN+∞+∞*
78 elioore rN+∞r
79 78 adantl φiArN+∞r
80 72 28 eqeltrd φiAVi
81 80 nnred φiAVi
82 81 adantr φiArN+∞Vi
83 ne0i iAA
84 83 adantl φiAA
85 84 neneqd φiA¬A=
86 85 61 syldan φiAN
87 86 nnred φiAN
88 87 adantr φiArN+∞N
89 85 57 syldan φiAranV
90 29 56 sstrdi φranV
91 fimaxre2 ranVranVFinxyranVyx
92 90 37 91 syl2anc φxyranVyx
93 92 adantr φiAxyranVyx
94 72 50 eqeltrd φiAViranV
95 suprub ranVranVxyranVyxViranVVisupranV<
96 89 51 93 94 95 syl31anc φiAVisupranV<
97 96 8 breqtrrdi φiAViN
98 97 adantr φiArN+∞ViN
99 88 rexrd φiArN+∞N*
100 simpr φiArN+∞rN+∞
101 ioogtlb N*+∞*rN+∞N<r
102 99 77 100 101 syl3anc φiArN+∞N<r
103 82 88 79 98 102 lelttrd φiArN+∞Vi<r
104 79 ltpnfd φiArN+∞r<+∞
105 75 77 79 103 104 eliood φiArN+∞rVi+∞
106 18 26 eqeltrd φiAsupM<m|rm+∞χ
107 72 106 eqeltrd φiAVim|rm+∞χ
108 nfcv _mA
109 nfrab1 _mm|rm+∞χ
110 6 109 nfcxfr _mM
111 nfcv _m
112 nfcv _m<
113 110 111 112 nfinf _msupM<
114 108 113 nfmpt _miAsupM<
115 7 114 nfcxfr _mV
116 nfcv _mi
117 115 116 nffv _mVi
118 117 109 nfel mVim|rm+∞χ
119 117 nfel1 mVi
120 nfcv _m.
121 nfcv _m+∞
122 117 120 121 nfov _mVi+∞
123 nfv mχ
124 122 123 nfralw mrVi+∞χ
125 119 124 nfan mVirVi+∞χ
126 118 125 nfbi mVim|rm+∞χVirVi+∞χ
127 eleq1 m=Vimm|rm+∞χVim|rm+∞χ
128 eleq1 m=VimVi
129 oveq1 m=Vim+∞=Vi+∞
130 nfcv _rm+∞
131 nfcv _rA
132 nfra1 rrm+∞χ
133 nfcv _r
134 132 133 nfrabw _rm|rm+∞χ
135 6 134 nfcxfr _rM
136 nfcv _r
137 nfcv _r<
138 135 136 137 nfinf _rsupM<
139 131 138 nfmpt _riAsupM<
140 7 139 nfcxfr _rV
141 nfcv _ri
142 140 141 nffv _rVi
143 nfcv _r.
144 nfcv _r+∞
145 142 143 144 nfov _rVi+∞
146 130 145 raleqf m+∞=Vi+∞rm+∞χrVi+∞χ
147 129 146 syl m=Virm+∞χrVi+∞χ
148 128 147 anbi12d m=Vimrm+∞χVirVi+∞χ
149 127 148 bibi12d m=Vimm|rm+∞χmrm+∞χVim|rm+∞χVirVi+∞χ
150 rabid mm|rm+∞χmrm+∞χ
151 117 126 149 150 vtoclgf ViVim|rm+∞χVirVi+∞χ
152 80 151 syl φiAVim|rm+∞χVirVi+∞χ
153 107 152 mpbid φiAVirVi+∞χ
154 153 simprd φiArVi+∞χ
155 154 r19.21bi φiArVi+∞χ
156 105 155 syldan φiArN+∞χ
157 156 an32s φrN+∞iAχ
158 157 ex φrN+∞iAχ
159 70 158 ralrimi φrN+∞iAχ
160 159 ex φrN+∞iAχ
161 2 160 ralrimi φrN+∞iAχ
162 161 adantr φ¬A=rN+∞iAχ
163 oveq1 n=Nn+∞=N+∞
164 nfcv _rn+∞
165 140 nfrn _rranV
166 165 136 137 nfsup _rsupranV<
167 8 166 nfcxfr _rN
168 167 143 144 nfov _rN+∞
169 164 168 raleqf n+∞=N+∞rn+∞iAχrN+∞iAχ
170 163 169 syl n=Nrn+∞iAχrN+∞iAχ
171 170 rspcev NrN+∞iAχnrn+∞iAχ
172 61 162 171 syl2anc φ¬A=nrn+∞iAχ
173 16 172 pm2.61dan φnrn+∞iAχ