Metamath Proof Explorer


Theorem fourierdlem72

Description: The derivative of O is continuous on the given interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem72.f φF:
fourierdlem72.xre φX
fourierdlem72.p P=mp0m|p0=-π+Xpm=π+Xi0..^mpi<pi+1
fourierdlem72.m φM
fourierdlem72.v φVPM
fourierdlem72.dvcn φi0..^MFViVi+1:ViVi+1cn
fourierdlem72.a φA
fourierdlem72.b φB
fourierdlem72.altb φA<B
fourierdlem72.ab φABππ
fourierdlem72.n0 φ¬0AB
fourierdlem72.c φC
fourierdlem72.q Q=i0MViX
fourierdlem72.u φU0..^M
fourierdlem72.abss φABQUQU+1
fourierdlem72.h H=sABFX+sCs
fourierdlem72.k K=sABs2sins2
fourierdlem72.o O=sABHsKs
Assertion fourierdlem72 φO:ABcn

Proof

Step Hyp Ref Expression
1 fourierdlem72.f φF:
2 fourierdlem72.xre φX
3 fourierdlem72.p P=mp0m|p0=-π+Xpm=π+Xi0..^mpi<pi+1
4 fourierdlem72.m φM
5 fourierdlem72.v φVPM
6 fourierdlem72.dvcn φi0..^MFViVi+1:ViVi+1cn
7 fourierdlem72.a φA
8 fourierdlem72.b φB
9 fourierdlem72.altb φA<B
10 fourierdlem72.ab φABππ
11 fourierdlem72.n0 φ¬0AB
12 fourierdlem72.c φC
13 fourierdlem72.q Q=i0MViX
14 fourierdlem72.u φU0..^M
15 fourierdlem72.abss φABQUQU+1
16 fourierdlem72.h H=sABFX+sCs
17 fourierdlem72.k K=sABs2sins2
18 fourierdlem72.o O=sABHsKs
19 ovex ABV
20 19 a1i φABV
21 1 adantr φsABF:
22 2 adantr φsABX
23 elioore sABs
24 23 adantl φsABs
25 22 24 readdcld φsABX+s
26 21 25 ffvelcdmd φsABFX+s
27 12 adantr φsABC
28 26 27 resubcld φsABFX+sC
29 ioossicc ABAB
30 29 sseli sABsAB
31 30 ad2antlr φsAB¬s0sAB
32 id s0s0
33 32 necon1bi ¬s0s=0
34 33 eleq1d ¬s0sAB0AB
35 34 adantl φsAB¬s0sAB0AB
36 31 35 mpbid φsAB¬s00AB
37 11 ad2antrr φsAB¬s0¬0AB
38 36 37 condan φsABs0
39 28 24 38 redivcld φsABFX+sCs
40 39 16 fmptd φH:AB
41 40 ffvelcdmda φsABHs
42 2re 2
43 42 a1i φsAB2
44 24 rehalfcld φsABs2
45 44 resincld φsABsins2
46 43 45 remulcld φsAB2sins2
47 2cnd φsAB2
48 24 recnd φsABs
49 48 halfcld φsABs2
50 49 sincld φsABsins2
51 2ne0 20
52 51 a1i φsAB20
53 10 sselda φsABsππ
54 fourierdlem44 sππs0sins20
55 53 38 54 syl2anc φsABsins20
56 47 50 52 55 mulne0d φsAB2sins20
57 24 46 56 redivcld φsABs2sins2
58 57 17 fmptd φK:AB
59 58 ffvelcdmda φsABKs
60 40 feqmptd φH=sABHs
61 58 feqmptd φK=sABKs
62 20 41 59 60 61 offval2 φH×fK=sABHsKs
63 18 62 eqtr4id φO=H×fK
64 63 oveq2d φDO=DH×fK
65 reelprrecn
66 65 a1i φ
67 26 recnd φsABFX+s
68 12 recnd φC
69 68 adantr φsABC
70 67 69 subcld φsABFX+sC
71 ioossre AB
72 71 a1i φAB
73 72 sselda φsABs
74 73 recnd φsABs
75 70 74 38 divcld φsABFX+sCs
76 75 16 fmptd φH:AB
77 74 halfcld φsABs2
78 77 sincld φsABsins2
79 47 78 mulcld φsAB2sins2
80 74 79 56 divcld φsABs2sins2
81 80 17 fmptd φK:AB
82 ax-resscn
83 82 a1i φ
84 ssid
85 84 a1i φ
86 cncfss ABcnABcn
87 83 85 86 syl2anc φABcnABcn
88 38 nelrdva φ¬0AB
89 1 83 fssd φF:
90 ssid
91 90 a1i φ
92 ioossre X+AX+B
93 92 a1i φX+AX+B
94 eqid TopOpenfld=TopOpenfld
95 94 tgioo2 topGenran.=TopOpenfld𝑡
96 94 95 dvres F:X+AX+BDFX+AX+B=FinttopGenran.X+AX+B
97 83 89 91 93 96 syl22anc φDFX+AX+B=FinttopGenran.X+AX+B
98 ioontr inttopGenran.X+AX+B=X+AX+B
99 98 reseq2i FinttopGenran.X+AX+B=FX+AX+B
100 97 99 eqtrdi φDFX+AX+B=FX+AX+B
101 3 fourierdlem2 MVPMV0MV0=-π+XVM=π+Xi0..^MVi<Vi+1
102 4 101 syl φVPMV0MV0=-π+XVM=π+Xi0..^MVi<Vi+1
103 5 102 mpbid φV0MV0=-π+XVM=π+Xi0..^MVi<Vi+1
104 103 simpld φV0M
105 elmapi V0MV:0M
106 104 105 syl φV:0M
107 elfzofz U0..^MU0M
108 14 107 syl φU0M
109 106 108 ffvelcdmd φVU
110 109 rexrd φVU*
111 fzofzp1 U0..^MU+10M
112 14 111 syl φU+10M
113 106 112 ffvelcdmd φVU+1
114 113 rexrd φVU+1*
115 pire π
116 115 a1i φπ
117 116 renegcld φπ
118 117 116 2 3 4 5 108 13 fourierdlem13 φQU=VUXVU=X+QU
119 118 simprd φVU=X+QU
120 118 simpld φQU=VUX
121 109 2 resubcld φVUX
122 120 121 eqeltrd φQU
123 117 116 2 3 4 5 112 13 fourierdlem13 φQU+1=VU+1XVU+1=X+QU+1
124 123 simpld φQU+1=VU+1X
125 113 2 resubcld φVU+1X
126 124 125 eqeltrd φQU+1
127 122 126 7 8 9 15 fourierdlem10 φQUABQU+1
128 127 simpld φQUA
129 122 7 2 128 leadd2dd φX+QUX+A
130 119 129 eqbrtrd φVUX+A
131 127 simprd φBQU+1
132 8 126 2 131 leadd2dd φX+BX+QU+1
133 123 simprd φVU+1=X+QU+1
134 132 133 breqtrrd φX+BVU+1
135 ioossioo VU*VU+1*VUX+AX+BVU+1X+AX+BVUVU+1
136 110 114 130 134 135 syl22anc φX+AX+BVUVU+1
137 136 resabs1d φFVUVU+1X+AX+B=FX+AX+B
138 137 eqcomd φFX+AX+B=FVUVU+1X+AX+B
139 14 ancli φφU0..^M
140 eleq1 i=Ui0..^MU0..^M
141 140 anbi2d i=Uφi0..^MφU0..^M
142 fveq2 i=UVi=VU
143 oveq1 i=Ui+1=U+1
144 143 fveq2d i=UVi+1=VU+1
145 142 144 oveq12d i=UViVi+1=VUVU+1
146 145 reseq2d i=UFViVi+1=FVUVU+1
147 145 oveq1d i=UViVi+1cn=VUVU+1cn
148 146 147 eleq12d i=UFViVi+1:ViVi+1cnFVUVU+1:VUVU+1cn
149 141 148 imbi12d i=Uφi0..^MFViVi+1:ViVi+1cnφU0..^MFVUVU+1:VUVU+1cn
150 149 6 vtoclg U0..^MφU0..^MFVUVU+1:VUVU+1cn
151 14 139 150 sylc φFVUVU+1:VUVU+1cn
152 rescncf X+AX+BVUVU+1FVUVU+1:VUVU+1cnFVUVU+1X+AX+B:X+AX+Bcn
153 136 151 152 sylc φFVUVU+1X+AX+B:X+AX+Bcn
154 138 153 eqeltrd φFX+AX+B:X+AX+Bcn
155 100 154 eqeltrd φFX+AX+B:X+AX+Bcn
156 1 2 7 8 88 155 12 16 fourierdlem59 φH:ABcn
157 87 156 sseldd φH:ABcn
158 iooretop ABtopGenran.
159 158 a1i φABtopGenran.
160 17 10 88 159 fourierdlem58 φK:ABcn
161 87 160 sseldd φK:ABcn
162 66 76 81 157 161 dvmulcncf φH×fK:ABcn
163 64 162 eqeltrd φO:ABcn