Metamath Proof Explorer


Theorem frgpcyg

Description: A free group is cyclic iff it has zero or one generator. (Contributed by Mario Carneiro, 21-Apr-2016) (Proof shortened by AV, 18-Apr-2021)

Ref Expression
Hypothesis frgpcyg.g G=freeGrpI
Assertion frgpcyg I1𝑜GCycGrp

Proof

Step Hyp Ref Expression
1 frgpcyg.g G=freeGrpI
2 brdom2 I1𝑜I1𝑜I1𝑜
3 sdom1 I1𝑜I=
4 fveq2 I=freeGrpI=freeGrp
5 1 4 eqtrid I=G=freeGrp
6 0ex V
7 eqid freeGrp=freeGrp
8 7 frgpgrp VfreeGrpGrp
9 6 8 ax-mp freeGrpGrp
10 eqid BasefreeGrp=BasefreeGrp
11 7 10 0frgp BasefreeGrp1𝑜
12 10 0cyg freeGrpGrpBasefreeGrp1𝑜freeGrpCycGrp
13 9 11 12 mp2an freeGrpCycGrp
14 5 13 eqeltrdi I=GCycGrp
15 3 14 sylbi I1𝑜GCycGrp
16 eqid BaseG=BaseG
17 eqid G=G
18 relen Rel
19 18 brrelex1i I1𝑜IV
20 1 frgpgrp IVGGrp
21 19 20 syl I1𝑜GGrp
22 eqid ~FGI=~FGI
23 eqid varFGrpI=varFGrpI
24 22 23 1 16 vrgpf IVvarFGrpI:IBaseG
25 19 24 syl I1𝑜varFGrpI:IBaseG
26 en1uniel I1𝑜II
27 25 26 ffvelcdmd I1𝑜varFGrpIIBaseG
28 zringgrp ringGrp
29 19 uniexd I1𝑜IV
30 1zzd I1𝑜1
31 29 30 fsnd I1𝑜I1:I
32 en1b I1𝑜I=I
33 32 biimpi I1𝑜I=I
34 33 feq2d I1𝑜I1:II1:I
35 31 34 mpbird I1𝑜I1:I
36 zringbas =Basering
37 1 36 23 frgpup3 ringGrpIVI1:I∃!fGGrpHomringfvarFGrpI=I1
38 28 19 35 37 mp3an2i I1𝑜∃!fGGrpHomringfvarFGrpI=I1
39 38 adantr I1𝑜xBaseG∃!fGGrpHomringfvarFGrpI=I1
40 reurex ∃!fGGrpHomringfvarFGrpI=I1fGGrpHomringfvarFGrpI=I1
41 39 40 syl I1𝑜xBaseGfGGrpHomringfvarFGrpI=I1
42 fveq1 fvarFGrpI=I1fvarFGrpII=I1I
43 25 26 fvco3d I1𝑜fvarFGrpII=fvarFGrpII
44 1z 1
45 fvsng IV1I1I=1
46 29 44 45 sylancl I1𝑜I1I=1
47 43 46 eqeq12d I1𝑜fvarFGrpII=I1IfvarFGrpII=1
48 42 47 imbitrid I1𝑜fvarFGrpI=I1fvarFGrpII=1
49 48 ad2antrr I1𝑜xBaseGfGGrpHomringfvarFGrpI=I1fvarFGrpII=1
50 16 36 ghmf fGGrpHomringf:BaseG
51 50 ad2antrl I1𝑜fGGrpHomringfvarFGrpII=1f:BaseG
52 51 ffvelcdmda I1𝑜fGGrpHomringfvarFGrpII=1xBaseGfx
53 52 an32s I1𝑜xBaseGfGGrpHomringfvarFGrpII=1fx
54 mptresid IBaseG=xBaseGx
55 1 16 23 frgpup3 GGrpIVvarFGrpI:IBaseG∃!gGGrpHomGgvarFGrpI=varFGrpI
56 21 19 25 55 syl3anc I1𝑜∃!gGGrpHomGgvarFGrpI=varFGrpI
57 reurmo ∃!gGGrpHomGgvarFGrpI=varFGrpI*gGGrpHomGgvarFGrpI=varFGrpI
58 56 57 syl I1𝑜*gGGrpHomGgvarFGrpI=varFGrpI
59 58 adantr I1𝑜fGGrpHomringfvarFGrpII=1*gGGrpHomGgvarFGrpI=varFGrpI
60 21 adantr I1𝑜fGGrpHomringfvarFGrpII=1GGrp
61 16 idghm GGrpIBaseGGGrpHomG
62 60 61 syl I1𝑜fGGrpHomringfvarFGrpII=1IBaseGGGrpHomG
63 25 adantr I1𝑜fGGrpHomringfvarFGrpII=1varFGrpI:IBaseG
64 fcoi2 varFGrpI:IBaseGIBaseGvarFGrpI=varFGrpI
65 63 64 syl I1𝑜fGGrpHomringfvarFGrpII=1IBaseGvarFGrpI=varFGrpI
66 51 feqmptd I1𝑜fGGrpHomringfvarFGrpII=1f=xBaseGfx
67 eqidd I1𝑜fGGrpHomringfvarFGrpII=1nnGvarFGrpII=nnGvarFGrpII
68 oveq1 n=fxnGvarFGrpII=fxGvarFGrpII
69 52 66 67 68 fmptco I1𝑜fGGrpHomringfvarFGrpII=1nnGvarFGrpIIf=xBaseGfxGvarFGrpII
70 27 adantr I1𝑜fGGrpHomringfvarFGrpII=1varFGrpIIBaseG
71 eqid nnGvarFGrpII=nnGvarFGrpII
72 17 71 16 mulgghm2 GGrpvarFGrpIIBaseGnnGvarFGrpIIringGrpHomG
73 60 70 72 syl2anc I1𝑜fGGrpHomringfvarFGrpII=1nnGvarFGrpIIringGrpHomG
74 simprl I1𝑜fGGrpHomringfvarFGrpII=1fGGrpHomring
75 ghmco nnGvarFGrpIIringGrpHomGfGGrpHomringnnGvarFGrpIIfGGrpHomG
76 73 74 75 syl2anc I1𝑜fGGrpHomringfvarFGrpII=1nnGvarFGrpIIfGGrpHomG
77 69 76 eqeltrrd I1𝑜fGGrpHomringfvarFGrpII=1xBaseGfxGvarFGrpIIGGrpHomG
78 33 adantr I1𝑜fGGrpHomringfvarFGrpII=1I=I
79 78 eleq2d I1𝑜fGGrpHomringfvarFGrpII=1yIyI
80 simprr I1𝑜fGGrpHomringfvarFGrpII=1fvarFGrpII=1
81 80 oveq1d I1𝑜fGGrpHomringfvarFGrpII=1fvarFGrpIIGvarFGrpII=1GvarFGrpII
82 16 17 mulg1 varFGrpIIBaseG1GvarFGrpII=varFGrpII
83 70 82 syl I1𝑜fGGrpHomringfvarFGrpII=11GvarFGrpII=varFGrpII
84 81 83 eqtrd I1𝑜fGGrpHomringfvarFGrpII=1fvarFGrpIIGvarFGrpII=varFGrpII
85 elsni yIy=I
86 85 fveq2d yIvarFGrpIy=varFGrpII
87 86 fveq2d yIfvarFGrpIy=fvarFGrpII
88 87 oveq1d yIfvarFGrpIyGvarFGrpII=fvarFGrpIIGvarFGrpII
89 88 86 eqeq12d yIfvarFGrpIyGvarFGrpII=varFGrpIyfvarFGrpIIGvarFGrpII=varFGrpII
90 84 89 syl5ibrcom I1𝑜fGGrpHomringfvarFGrpII=1yIfvarFGrpIyGvarFGrpII=varFGrpIy
91 79 90 sylbid I1𝑜fGGrpHomringfvarFGrpII=1yIfvarFGrpIyGvarFGrpII=varFGrpIy
92 91 imp I1𝑜fGGrpHomringfvarFGrpII=1yIfvarFGrpIyGvarFGrpII=varFGrpIy
93 92 mpteq2dva I1𝑜fGGrpHomringfvarFGrpII=1yIfvarFGrpIyGvarFGrpII=yIvarFGrpIy
94 63 ffvelcdmda I1𝑜fGGrpHomringfvarFGrpII=1yIvarFGrpIyBaseG
95 63 feqmptd I1𝑜fGGrpHomringfvarFGrpII=1varFGrpI=yIvarFGrpIy
96 eqidd I1𝑜fGGrpHomringfvarFGrpII=1xBaseGfxGvarFGrpII=xBaseGfxGvarFGrpII
97 fveq2 x=varFGrpIyfx=fvarFGrpIy
98 97 oveq1d x=varFGrpIyfxGvarFGrpII=fvarFGrpIyGvarFGrpII
99 94 95 96 98 fmptco I1𝑜fGGrpHomringfvarFGrpII=1xBaseGfxGvarFGrpIIvarFGrpI=yIfvarFGrpIyGvarFGrpII
100 93 99 95 3eqtr4d I1𝑜fGGrpHomringfvarFGrpII=1xBaseGfxGvarFGrpIIvarFGrpI=varFGrpI
101 coeq1 g=IBaseGgvarFGrpI=IBaseGvarFGrpI
102 101 eqeq1d g=IBaseGgvarFGrpI=varFGrpIIBaseGvarFGrpI=varFGrpI
103 coeq1 g=xBaseGfxGvarFGrpIIgvarFGrpI=xBaseGfxGvarFGrpIIvarFGrpI
104 103 eqeq1d g=xBaseGfxGvarFGrpIIgvarFGrpI=varFGrpIxBaseGfxGvarFGrpIIvarFGrpI=varFGrpI
105 102 104 rmoi *gGGrpHomGgvarFGrpI=varFGrpIIBaseGGGrpHomGIBaseGvarFGrpI=varFGrpIxBaseGfxGvarFGrpIIGGrpHomGxBaseGfxGvarFGrpIIvarFGrpI=varFGrpIIBaseG=xBaseGfxGvarFGrpII
106 59 62 65 77 100 105 syl122anc I1𝑜fGGrpHomringfvarFGrpII=1IBaseG=xBaseGfxGvarFGrpII
107 54 106 eqtr3id I1𝑜fGGrpHomringfvarFGrpII=1xBaseGx=xBaseGfxGvarFGrpII
108 mpteqb xBaseGxBaseGxBaseGx=xBaseGfxGvarFGrpIIxBaseGx=fxGvarFGrpII
109 id xBaseGxBaseG
110 108 109 mprg xBaseGx=xBaseGfxGvarFGrpIIxBaseGx=fxGvarFGrpII
111 107 110 sylib I1𝑜fGGrpHomringfvarFGrpII=1xBaseGx=fxGvarFGrpII
112 111 r19.21bi I1𝑜fGGrpHomringfvarFGrpII=1xBaseGx=fxGvarFGrpII
113 112 an32s I1𝑜xBaseGfGGrpHomringfvarFGrpII=1x=fxGvarFGrpII
114 68 rspceeqv fxx=fxGvarFGrpIInx=nGvarFGrpII
115 53 113 114 syl2anc I1𝑜xBaseGfGGrpHomringfvarFGrpII=1nx=nGvarFGrpII
116 115 expr I1𝑜xBaseGfGGrpHomringfvarFGrpII=1nx=nGvarFGrpII
117 49 116 syld I1𝑜xBaseGfGGrpHomringfvarFGrpI=I1nx=nGvarFGrpII
118 117 rexlimdva I1𝑜xBaseGfGGrpHomringfvarFGrpI=I1nx=nGvarFGrpII
119 41 118 mpd I1𝑜xBaseGnx=nGvarFGrpII
120 16 17 21 27 119 iscygd I1𝑜GCycGrp
121 15 120 jaoi I1𝑜I1𝑜GCycGrp
122 2 121 sylbi I1𝑜GCycGrp
123 cygabl GCycGrpGAbel
124 1 frgpnabl 1𝑜I¬GAbel
125 124 con2i GAbel¬1𝑜I
126 ablgrp GAbelGGrp
127 eqid 0G=0G
128 16 127 grpidcl GGrp0GBaseG
129 1 16 elbasfv 0GBaseGIV
130 126 128 129 3syl GAbelIV
131 1onn 1𝑜ω
132 nnfi 1𝑜ω1𝑜Fin
133 131 132 ax-mp 1𝑜Fin
134 fidomtri2 IV1𝑜FinI1𝑜¬1𝑜I
135 130 133 134 sylancl GAbelI1𝑜¬1𝑜I
136 125 135 mpbird GAbelI1𝑜
137 123 136 syl GCycGrpI1𝑜
138 122 137 impbii I1𝑜GCycGrp