Step |
Hyp |
Ref |
Expression |
1 |
|
fsuppssind.b |
|
2 |
|
fsuppssind.z |
|
3 |
|
fsuppssind.p |
|
4 |
|
fsuppssind.g |
|
5 |
|
fsuppssind.v |
|
6 |
|
fsuppssind.s |
|
7 |
|
fsuppssind.0 |
|
8 |
|
fsuppssind.1 |
|
9 |
|
fsuppssind.2 |
|
10 |
|
fsuppssind.3 |
|
11 |
|
fsuppssind.4 |
|
12 |
|
fsuppssind.5 |
|
13 |
10 6
|
fssresd |
|
14 |
2
|
fvexi |
|
15 |
14
|
a1i |
|
16 |
11 15
|
fsuppres |
|
17 |
13 16
|
jca |
|
18 |
5 6
|
ssexd |
|
19 |
1 2
|
grpidcl |
|
20 |
4 19
|
syl |
|
21 |
|
fconst6g |
|
22 |
20 21
|
syl |
|
23 |
|
xpundir |
|
24 |
|
undif |
|
25 |
6 24
|
sylib |
|
26 |
25
|
xpeq1d |
|
27 |
23 26
|
eqtr3id |
|
28 |
27 7
|
eqeltrd |
|
29 |
1
|
fvexi |
|
30 |
29
|
a1i |
|
31 |
30 5 6
|
fsuppssindlem2 |
|
32 |
22 28 31
|
mpbir2and |
|
33 |
|
simplrr |
|
34 |
20
|
ad2antrr |
|
35 |
33 34
|
ifcld |
|
36 |
35
|
fmpttd |
|
37 |
|
fconstmpt |
|
38 |
37
|
uneq2i |
|
39 |
|
eldifn |
|
40 |
|
eleq1a |
|
41 |
40
|
con3dimp |
|
42 |
41
|
adantlr |
|
43 |
42
|
adantll |
|
44 |
39 43
|
sylan2 |
|
45 |
44
|
iffalsed |
|
46 |
45
|
mpteq2dva |
|
47 |
46
|
uneq2d |
|
48 |
|
mptun |
|
49 |
6
|
adantr |
|
50 |
49 24
|
sylib |
|
51 |
50
|
mpteq1d |
|
52 |
48 51
|
eqtr3id |
|
53 |
47 52
|
eqtr3d |
|
54 |
38 53
|
syl5eq |
|
55 |
54 8
|
eqeltrd |
|
56 |
29
|
a1i |
|
57 |
5
|
adantr |
|
58 |
56 57 49
|
fsuppssindlem2 |
|
59 |
36 55 58
|
mpbir2and |
|
60 |
30 5 6
|
fsuppssindlem2 |
|
61 |
30 5 6
|
fsuppssindlem2 |
|
62 |
60 61
|
anbi12d |
|
63 |
1 3
|
grpcl |
|
64 |
4 63
|
syl3an1 |
|
65 |
64
|
3expb |
|
66 |
65
|
adantlr |
|
67 |
|
simprll |
|
68 |
|
simprrl |
|
69 |
18
|
adantr |
|
70 |
|
inidm |
|
71 |
66 67 68 69 69 70
|
off |
|
72 |
67
|
ffnd |
|
73 |
68
|
ffnd |
|
74 |
|
fnconstg |
|
75 |
14 74
|
mp1i |
|
76 |
5
|
difexd |
|
77 |
76
|
adantr |
|
78 |
|
disjdif |
|
79 |
78
|
a1i |
|
80 |
72 73 75 75 69 77 79
|
ofun |
|
81 |
14 74
|
mp1i |
|
82 |
|
fvconst2g |
|
83 |
15 82
|
sylan |
|
84 |
1 3 2
|
grplid |
|
85 |
4 20 84
|
syl2anc |
|
86 |
85
|
adantr |
|
87 |
14
|
a1i |
|
88 |
87 82
|
sylancom |
|
89 |
86 88
|
eqtr4d |
|
90 |
76 81 81 81 83 83 89
|
offveq |
|
91 |
90
|
uneq2d |
|
92 |
91
|
adantr |
|
93 |
80 92
|
eqtrd |
|
94 |
9
|
caovclg |
|
95 |
94
|
adantrrl |
|
96 |
95
|
adantrll |
|
97 |
93 96
|
eqeltrrd |
|
98 |
30 5 6
|
fsuppssindlem2 |
|
99 |
98
|
adantr |
|
100 |
71 97 99
|
mpbir2and |
|
101 |
62 100
|
sylbida |
|
102 |
1 2 3 4 18 32 59 101
|
fsuppind |
|
103 |
17 102
|
mpdan |
|
104 |
30 18
|
elmapd |
|
105 |
13 104
|
mpbird |
|
106 |
|
fveq1 |
|
107 |
106
|
ifeq1d |
|
108 |
107
|
mpteq2dv |
|
109 |
108
|
eleq1d |
|
110 |
109
|
elrab3 |
|
111 |
105 110
|
syl |
|
112 |
15 5 10 12
|
fsuppssindlem1 |
|
113 |
112
|
eleq1d |
|
114 |
111 113
|
bitr4d |
|
115 |
103 114
|
mpbid |
|