Metamath Proof Explorer


Theorem fta1glem2

Description: Lemma for fta1g . (Contributed by Mario Carneiro, 12-Jun-2015)

Ref Expression
Hypotheses fta1g.p P=Poly1R
fta1g.b B=BaseP
fta1g.d D=deg1R
fta1g.o O=eval1R
fta1g.w W=0R
fta1g.z 0˙=0P
fta1g.1 φRIDomn
fta1g.2 φFB
fta1glem.k K=BaseR
fta1glem.x X=var1R
fta1glem.m -˙=-P
fta1glem.a A=algScP
fta1glem.g G=X-˙AT
fta1glem.3 φN0
fta1glem.4 φDF=N+1
fta1glem.5 φTOF-1W
fta1glem.6 φgBDg=NOg-1WDg
Assertion fta1glem2 φOF-1WDF

Proof

Step Hyp Ref Expression
1 fta1g.p P=Poly1R
2 fta1g.b B=BaseP
3 fta1g.d D=deg1R
4 fta1g.o O=eval1R
5 fta1g.w W=0R
6 fta1g.z 0˙=0P
7 fta1g.1 φRIDomn
8 fta1g.2 φFB
9 fta1glem.k K=BaseR
10 fta1glem.x X=var1R
11 fta1glem.m -˙=-P
12 fta1glem.a A=algScP
13 fta1glem.g G=X-˙AT
14 fta1glem.3 φN0
15 fta1glem.4 φDF=N+1
16 fta1glem.5 φTOF-1W
17 fta1glem.6 φgBDg=NOg-1WDg
18 eqid R𝑠K=R𝑠K
19 eqid BaseR𝑠K=BaseR𝑠K
20 9 fvexi KV
21 20 a1i φKV
22 isidom RIDomnRCRingRDomn
23 22 simplbi RIDomnRCRing
24 7 23 syl φRCRing
25 4 1 18 9 evl1rhm RCRingOPRingHomR𝑠K
26 24 25 syl φOPRingHomR𝑠K
27 2 19 rhmf OPRingHomR𝑠KO:BBaseR𝑠K
28 26 27 syl φO:BBaseR𝑠K
29 28 8 ffvelcdmd φOFBaseR𝑠K
30 18 9 19 7 21 29 pwselbas φOF:KK
31 30 ffnd φOFFnK
32 fniniseg OFFnKTOF-1WTKOFT=W
33 31 32 syl φTOF-1WTKOFT=W
34 16 33 mpbid φTKOFT=W
35 34 simprd φOFT=W
36 22 simprbi RIDomnRDomn
37 domnnzr RDomnRNzRing
38 36 37 syl RIDomnRNzRing
39 7 38 syl φRNzRing
40 34 simpld φTK
41 eqid rP=rP
42 1 2 9 10 11 12 13 4 39 24 40 8 5 41 facth1 φGrPFOFT=W
43 35 42 mpbird φGrPF
44 nzrring RNzRingRRing
45 39 44 syl φRRing
46 eqid Monic1pR=Monic1pR
47 1 2 9 10 11 12 13 4 39 24 40 46 3 5 ply1remlem φGMonic1pRDG=1OG-1W=T
48 47 simp1d φGMonic1pR
49 eqid Unic1pR=Unic1pR
50 49 46 mon1puc1p RRingGMonic1pRGUnic1pR
51 45 48 50 syl2anc φGUnic1pR
52 eqid P=P
53 eqid quot1pR=quot1pR
54 1 41 2 49 52 53 dvdsq1p RRingFBGUnic1pRGrPFF=Fquot1pRGPG
55 45 8 51 54 syl3anc φGrPFF=Fquot1pRGPG
56 43 55 mpbid φF=Fquot1pRGPG
57 56 fveq2d φOF=OFquot1pRGPG
58 53 1 2 49 q1pcl RRingFBGUnic1pRFquot1pRGB
59 45 8 51 58 syl3anc φFquot1pRGB
60 1 2 46 mon1pcl GMonic1pRGB
61 48 60 syl φGB
62 eqid R𝑠K=R𝑠K
63 2 52 62 rhmmul OPRingHomR𝑠KFquot1pRGBGBOFquot1pRGPG=OFquot1pRGR𝑠KOG
64 26 59 61 63 syl3anc φOFquot1pRGPG=OFquot1pRGR𝑠KOG
65 28 59 ffvelcdmd φOFquot1pRGBaseR𝑠K
66 28 61 ffvelcdmd φOGBaseR𝑠K
67 eqid R=R
68 18 19 7 21 65 66 67 62 pwsmulrval φOFquot1pRGR𝑠KOG=OFquot1pRGRfOG
69 57 64 68 3eqtrd φOF=OFquot1pRGRfOG
70 69 fveq1d φOFx=OFquot1pRGRfOGx
71 70 adantr φxKOFx=OFquot1pRGRfOGx
72 18 9 19 7 21 65 pwselbas φOFquot1pRG:KK
73 72 ffnd φOFquot1pRGFnK
74 73 adantr φxKOFquot1pRGFnK
75 18 9 19 7 21 66 pwselbas φOG:KK
76 75 ffnd φOGFnK
77 76 adantr φxKOGFnK
78 20 a1i φxKKV
79 simpr φxKxK
80 fnfvof OFquot1pRGFnKOGFnKKVxKOFquot1pRGRfOGx=OFquot1pRGxROGx
81 74 77 78 79 80 syl22anc φxKOFquot1pRGRfOGx=OFquot1pRGxROGx
82 71 81 eqtrd φxKOFx=OFquot1pRGxROGx
83 82 eqeq1d φxKOFx=WOFquot1pRGxROGx=W
84 7 36 syl φRDomn
85 84 adantr φxKRDomn
86 72 ffvelcdmda φxKOFquot1pRGxK
87 75 ffvelcdmda φxKOGxK
88 9 67 5 domneq0 RDomnOFquot1pRGxKOGxKOFquot1pRGxROGx=WOFquot1pRGx=WOGx=W
89 85 86 87 88 syl3anc φxKOFquot1pRGxROGx=WOFquot1pRGx=WOGx=W
90 83 89 bitrd φxKOFx=WOFquot1pRGx=WOGx=W
91 90 pm5.32da φxKOFx=WxKOFquot1pRGx=WOGx=W
92 andi xKOFquot1pRGx=WOGx=WxKOFquot1pRGx=WxKOGx=W
93 91 92 bitrdi φxKOFx=WxKOFquot1pRGx=WxKOGx=W
94 fniniseg OFFnKxOF-1WxKOFx=W
95 31 94 syl φxOF-1WxKOFx=W
96 elun xOFquot1pRG-1WTxOFquot1pRG-1WxT
97 fniniseg OFquot1pRGFnKxOFquot1pRG-1WxKOFquot1pRGx=W
98 73 97 syl φxOFquot1pRG-1WxKOFquot1pRGx=W
99 47 simp3d φOG-1W=T
100 99 eleq2d φxOG-1WxT
101 fniniseg OGFnKxOG-1WxKOGx=W
102 76 101 syl φxOG-1WxKOGx=W
103 100 102 bitr3d φxTxKOGx=W
104 98 103 orbi12d φxOFquot1pRG-1WxTxKOFquot1pRGx=WxKOGx=W
105 96 104 bitrid φxOFquot1pRG-1WTxKOFquot1pRGx=WxKOGx=W
106 93 95 105 3bitr4d φxOF-1WxOFquot1pRG-1WT
107 106 eqrdv φOF-1W=OFquot1pRG-1WT
108 107 fveq2d φOF-1W=OFquot1pRG-1WT
109 fvex OFquot1pRGV
110 109 cnvex OFquot1pRG-1V
111 110 imaex OFquot1pRG-1WV
112 111 a1i φOFquot1pRG-1WV
113 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 fta1glem1 φDFquot1pRG=N
114 fveq2 g=Fquot1pRGDg=DFquot1pRG
115 114 eqeq1d g=Fquot1pRGDg=NDFquot1pRG=N
116 fveq2 g=Fquot1pRGOg=OFquot1pRG
117 116 cnveqd g=Fquot1pRGOg-1=OFquot1pRG-1
118 117 imaeq1d g=Fquot1pRGOg-1W=OFquot1pRG-1W
119 118 fveq2d g=Fquot1pRGOg-1W=OFquot1pRG-1W
120 119 114 breq12d g=Fquot1pRGOg-1WDgOFquot1pRG-1WDFquot1pRG
121 115 120 imbi12d g=Fquot1pRGDg=NOg-1WDgDFquot1pRG=NOFquot1pRG-1WDFquot1pRG
122 121 17 59 rspcdva φDFquot1pRG=NOFquot1pRG-1WDFquot1pRG
123 113 122 mpd φOFquot1pRG-1WDFquot1pRG
124 123 113 breqtrd φOFquot1pRG-1WN
125 hashbnd OFquot1pRG-1WVN0OFquot1pRG-1WNOFquot1pRG-1WFin
126 112 14 124 125 syl3anc φOFquot1pRG-1WFin
127 snfi TFin
128 unfi OFquot1pRG-1WFinTFinOFquot1pRG-1WTFin
129 126 127 128 sylancl φOFquot1pRG-1WTFin
130 hashcl OFquot1pRG-1WTFinOFquot1pRG-1WT0
131 129 130 syl φOFquot1pRG-1WT0
132 131 nn0red φOFquot1pRG-1WT
133 hashcl OFquot1pRG-1WFinOFquot1pRG-1W0
134 126 133 syl φOFquot1pRG-1W0
135 134 nn0red φOFquot1pRG-1W
136 peano2re OFquot1pRG-1WOFquot1pRG-1W+1
137 135 136 syl φOFquot1pRG-1W+1
138 peano2nn0 N0N+10
139 14 138 syl φN+10
140 15 139 eqeltrd φDF0
141 140 nn0red φDF
142 hashun2 OFquot1pRG-1WFinTFinOFquot1pRG-1WTOFquot1pRG-1W+T
143 126 127 142 sylancl φOFquot1pRG-1WTOFquot1pRG-1W+T
144 hashsng TOF-1WT=1
145 16 144 syl φT=1
146 145 oveq2d φOFquot1pRG-1W+T=OFquot1pRG-1W+1
147 143 146 breqtrd φOFquot1pRG-1WTOFquot1pRG-1W+1
148 14 nn0red φN
149 1red φ1
150 135 148 149 124 leadd1dd φOFquot1pRG-1W+1N+1
151 150 15 breqtrrd φOFquot1pRG-1W+1DF
152 132 137 141 147 151 letrd φOFquot1pRG-1WTDF
153 108 152 eqbrtrd φOF-1WDF