Metamath Proof Explorer


Theorem gexdvds

Description: The only N that annihilate all the elements of the group are the multiples of the group exponent. (Contributed by Mario Carneiro, 24-Apr-2016)

Ref Expression
Hypotheses gexcl.1 X=BaseG
gexcl.2 E=gExG
gexid.3 ·˙=G
gexid.4 0˙=0G
Assertion gexdvds GGrpNENxXN·˙x=0˙

Proof

Step Hyp Ref Expression
1 gexcl.1 X=BaseG
2 gexcl.2 E=gExG
3 gexid.3 ·˙=G
4 gexid.4 0˙=0G
5 1 2 3 4 gexdvdsi GGrpxXENN·˙x=0˙
6 5 3expia GGrpxXENN·˙x=0˙
7 6 ralrimdva GGrpENxXN·˙x=0˙
8 7 adantr GGrpNENxXN·˙x=0˙
9 noel ¬N
10 simprr GGrpNE=0y|xXy·˙x=0˙=y|xXy·˙x=0˙=
11 10 eleq2d GGrpNE=0y|xXy·˙x=0˙=Ny|xXy·˙x=0˙N
12 oveq1 y=Ny·˙x=N·˙x
13 12 eqeq1d y=Ny·˙x=0˙N·˙x=0˙
14 13 ralbidv y=NxXy·˙x=0˙xXN·˙x=0˙
15 14 elrab Ny|xXy·˙x=0˙NxXN·˙x=0˙
16 11 15 bitr3di GGrpNE=0y|xXy·˙x=0˙=NNxXN·˙x=0˙
17 16 rbaibd GGrpNE=0y|xXy·˙x=0˙=xXN·˙x=0˙NN
18 9 17 mtbii GGrpNE=0y|xXy·˙x=0˙=xXN·˙x=0˙¬N
19 18 ex GGrpNE=0y|xXy·˙x=0˙=xXN·˙x=0˙¬N
20 nn0abscl NN0
21 20 ad2antlr GGrpNE=0y|xXy·˙x=0˙=N0
22 elnn0 N0NN=0
23 21 22 sylib GGrpNE=0y|xXy·˙x=0˙=NN=0
24 23 ord GGrpNE=0y|xXy·˙x=0˙=¬NN=0
25 19 24 syld GGrpNE=0y|xXy·˙x=0˙=xXN·˙x=0˙N=0
26 simpr GGrpNxXN=NN=N
27 26 oveq1d GGrpNxXN=NN·˙x=N·˙x
28 27 eqeq1d GGrpNxXN=NN·˙x=0˙N·˙x=0˙
29 oveq1 N=NN·˙x=- N·˙x
30 29 eqeq1d N=NN·˙x=0˙- N·˙x=0˙
31 eqid invgG=invgG
32 1 3 31 mulgneg GGrpNxX- N·˙x=invgGN·˙x
33 32 3expa GGrpNxX- N·˙x=invgGN·˙x
34 4 31 grpinvid GGrpinvgG0˙=0˙
35 34 ad2antrr GGrpNxXinvgG0˙=0˙
36 35 eqcomd GGrpNxX0˙=invgG0˙
37 33 36 eqeq12d GGrpNxX- N·˙x=0˙invgGN·˙x=invgG0˙
38 simpll GGrpNxXGGrp
39 1 3 mulgcl GGrpNxXN·˙xX
40 39 3expa GGrpNxXN·˙xX
41 1 4 grpidcl GGrp0˙X
42 41 ad2antrr GGrpNxX0˙X
43 1 31 38 40 42 grpinv11 GGrpNxXinvgGN·˙x=invgG0˙N·˙x=0˙
44 37 43 bitrd GGrpNxX- N·˙x=0˙N·˙x=0˙
45 30 44 sylan9bbr GGrpNxXN=NN·˙x=0˙N·˙x=0˙
46 zre NN
47 46 ad2antlr GGrpNxXN
48 47 absord GGrpNxXN=NN=N
49 28 45 48 mpjaodan GGrpNxXN·˙x=0˙N·˙x=0˙
50 49 ralbidva GGrpNxXN·˙x=0˙xXN·˙x=0˙
51 50 adantr GGrpNE=0y|xXy·˙x=0˙=xXN·˙x=0˙xXN·˙x=0˙
52 0dvds N0NN=0
53 52 ad2antlr GGrpNE=0y|xXy·˙x=0˙=0NN=0
54 simprl GGrpNE=0y|xXy·˙x=0˙=E=0
55 54 breq1d GGrpNE=0y|xXy·˙x=0˙=EN0N
56 zcn NN
57 56 ad2antlr GGrpNE=0y|xXy·˙x=0˙=N
58 57 abs00ad GGrpNE=0y|xXy·˙x=0˙=N=0N=0
59 53 55 58 3bitr4rd GGrpNE=0y|xXy·˙x=0˙=N=0EN
60 25 51 59 3imtr3d GGrpNE=0y|xXy·˙x=0˙=xXN·˙x=0˙EN
61 elrabi Ey|xXy·˙x=0˙E
62 46 adantl GGrpNN
63 nnrp EE+
64 modval NE+NmodE=NENE
65 62 63 64 syl2an GGrpNENmodE=NENE
66 65 adantr GGrpNExXN·˙x=0˙NmodE=NENE
67 66 oveq1d GGrpNExXN·˙x=0˙NmodE·˙x=NENE·˙x
68 simplll GGrpNExXN·˙x=0˙GGrp
69 simpllr GGrpNExXN·˙x=0˙N
70 nnz EE
71 70 ad2antlr GGrpNExXN·˙x=0˙E
72 rerpdivcl NE+NE
73 62 63 72 syl2an GGrpNENE
74 73 flcld GGrpNENE
75 74 adantr GGrpNExXN·˙x=0˙NE
76 71 75 zmulcld GGrpNExXN·˙x=0˙ENE
77 simprl GGrpNExXN·˙x=0˙xX
78 eqid -G=-G
79 1 3 78 mulgsubdir GGrpNENExXNENE·˙x=N·˙x-GENE·˙x
80 68 69 76 77 79 syl13anc GGrpNExXN·˙x=0˙NENE·˙x=N·˙x-GENE·˙x
81 simprr GGrpNExXN·˙x=0˙N·˙x=0˙
82 dvdsmul1 ENEEENE
83 71 75 82 syl2anc GGrpNExXN·˙x=0˙EENE
84 1 2 3 4 gexdvdsi GGrpxXEENEENE·˙x=0˙
85 68 77 83 84 syl3anc GGrpNExXN·˙x=0˙ENE·˙x=0˙
86 81 85 oveq12d GGrpNExXN·˙x=0˙N·˙x-GENE·˙x=0˙-G0˙
87 simpll GGrpNEGGrp
88 1 4 78 grpsubid GGrp0˙X0˙-G0˙=0˙
89 87 41 88 syl2anc2 GGrpNE0˙-G0˙=0˙
90 89 adantr GGrpNExXN·˙x=0˙0˙-G0˙=0˙
91 86 90 eqtrd GGrpNExXN·˙x=0˙N·˙x-GENE·˙x=0˙
92 67 80 91 3eqtrd GGrpNExXN·˙x=0˙NmodE·˙x=0˙
93 92 expr GGrpNExXN·˙x=0˙NmodE·˙x=0˙
94 93 ralimdva GGrpNExXN·˙x=0˙xXNmodE·˙x=0˙
95 modlt NE+NmodE<E
96 62 63 95 syl2an GGrpNENmodE<E
97 zmodcl NENmodE0
98 97 adantll GGrpNENmodE0
99 98 nn0red GGrpNENmodE
100 nnre EE
101 100 adantl GGrpNEE
102 99 101 ltnled GGrpNENmodE<E¬ENmodE
103 96 102 mpbid GGrpNE¬ENmodE
104 1 2 3 4 gexlem2 GGrpNmodExXNmodE·˙x=0˙E1NmodE
105 elfzle2 E1NmodEENmodE
106 104 105 syl GGrpNmodExXNmodE·˙x=0˙ENmodE
107 106 3expia GGrpNmodExXNmodE·˙x=0˙ENmodE
108 107 impancom GGrpxXNmodE·˙x=0˙NmodEENmodE
109 108 con3d GGrpxXNmodE·˙x=0˙¬ENmodE¬NmodE
110 109 ex GGrpxXNmodE·˙x=0˙¬ENmodE¬NmodE
111 110 ad2antrr GGrpNExXNmodE·˙x=0˙¬ENmodE¬NmodE
112 103 111 mpid GGrpNExXNmodE·˙x=0˙¬NmodE
113 elnn0 NmodE0NmodENmodE=0
114 98 113 sylib GGrpNENmodENmodE=0
115 114 ord GGrpNE¬NmodENmodE=0
116 94 112 115 3syld GGrpNExXN·˙x=0˙NmodE=0
117 simpr GGrpNEE
118 simplr GGrpNEN
119 dvdsval3 ENENNmodE=0
120 117 118 119 syl2anc GGrpNEENNmodE=0
121 116 120 sylibrd GGrpNExXN·˙x=0˙EN
122 61 121 sylan2 GGrpNEy|xXy·˙x=0˙xXN·˙x=0˙EN
123 eqid y|xXy·˙x=0˙=y|xXy·˙x=0˙
124 1 3 4 2 123 gexlem1 GGrpE=0y|xXy·˙x=0˙=Ey|xXy·˙x=0˙
125 124 adantr GGrpNE=0y|xXy·˙x=0˙=Ey|xXy·˙x=0˙
126 60 122 125 mpjaodan GGrpNxXN·˙x=0˙EN
127 8 126 impbid GGrpNENxXN·˙x=0˙