Metamath Proof Explorer


Theorem gsumle

Description: A finite sum in an ordered monoid is monotonic. This proof would be much easier in an ordered group, where an inverse element would be available. (Contributed by Thierry Arnoux, 13-Mar-2018)

Ref Expression
Hypotheses gsumle.b B=BaseM
gsumle.l ˙=M
gsumle.m φMoMnd
gsumle.n φMCMnd
gsumle.a φAFin
gsumle.f φF:AB
gsumle.g φG:AB
gsumle.c φF˙fG
Assertion gsumle φMF˙MG

Proof

Step Hyp Ref Expression
1 gsumle.b B=BaseM
2 gsumle.l ˙=M
3 gsumle.m φMoMnd
4 gsumle.n φMCMnd
5 gsumle.a φAFin
6 gsumle.f φF:AB
7 gsumle.g φG:AB
8 gsumle.c φF˙fG
9 ssid AA
10 sseq1 a=aAA
11 10 anbi2d a=φaAφA
12 reseq2 a=Fa=F
13 12 oveq2d a=MFa=MF
14 reseq2 a=Ga=G
15 14 oveq2d a=MGa=MG
16 13 15 breq12d a=MFa˙MGaMF˙MG
17 11 16 imbi12d a=φaAMFa˙MGaφAMF˙MG
18 sseq1 a=eaAeA
19 18 anbi2d a=eφaAφeA
20 reseq2 a=eFa=Fe
21 20 oveq2d a=eMFa=MFe
22 reseq2 a=eGa=Ge
23 22 oveq2d a=eMGa=MGe
24 21 23 breq12d a=eMFa˙MGaMFe˙MGe
25 19 24 imbi12d a=eφaAMFa˙MGaφeAMFe˙MGe
26 sseq1 a=eyaAeyA
27 26 anbi2d a=eyφaAφeyA
28 reseq2 a=eyFa=Fey
29 28 oveq2d a=eyMFa=MFey
30 reseq2 a=eyGa=Gey
31 30 oveq2d a=eyMGa=MGey
32 29 31 breq12d a=eyMFa˙MGaMFey˙MGey
33 27 32 imbi12d a=eyφaAMFa˙MGaφeyAMFey˙MGey
34 sseq1 a=AaAAA
35 34 anbi2d a=AφaAφAA
36 reseq2 a=AFa=FA
37 36 oveq2d a=AMFa=MFA
38 reseq2 a=AGa=GA
39 38 oveq2d a=AMGa=MGA
40 37 39 breq12d a=AMFa˙MGaMFA˙MGA
41 35 40 imbi12d a=AφaAMFa˙MGaφAAMFA˙MGA
42 omndtos MoMndMToset
43 tospos MTosetMPoset
44 3 42 43 3syl φMPoset
45 res0 F=
46 45 oveq2i MF=M
47 eqid 0M=0M
48 47 gsum0 M=0M
49 46 48 eqtri MF=0M
50 omndmnd MoMndMMnd
51 1 47 mndidcl MMnd0MB
52 3 50 51 3syl φ0MB
53 49 52 eqeltrid φMFB
54 1 2 posref MPosetMFBMF˙MF
55 44 53 54 syl2anc φMF˙MF
56 res0 G=
57 45 56 eqtr4i F=G
58 57 oveq2i MF=MG
59 55 58 breqtrdi φMF˙MG
60 59 adantr φAMF˙MG
61 ssun1 eey
62 sstr2 eeyeyAeA
63 61 62 ax-mp eyAeA
64 63 anim2i φeyAφeA
65 64 imim1i φeAMFe˙MGeφeyAMFe˙MGe
66 simplr eFin¬yeφeyAMFe˙MGeφeyA
67 simpllr eFin¬yeφeyAMFe˙MGe¬ye
68 simpr eFin¬yeφeyAMFe˙MGeMFe˙MGe
69 eqid +M=+M
70 3 ad3antrrr φeyA¬yeMFe˙MGeMoMnd
71 7 ad2antrr φeyA¬yeG:AB
72 simplr φeyA¬yeeyA
73 ssun2 yey
74 vex yV
75 74 snss yeyyey
76 73 75 mpbir yey
77 76 a1i φeyA¬yeyey
78 72 77 sseldd φeyA¬yeyA
79 71 78 ffvelcdmd φeyA¬yeGyB
80 79 adantr φeyA¬yeMFe˙MGeGyB
81 4 ad2antrr φeyA¬yeMCMnd
82 vex eV
83 82 a1i φeyA¬yeeV
84 6 ad2antrr φeyA¬yeF:AB
85 61 72 sstrid φeyA¬yeeA
86 84 85 fssresd φeyA¬yeFe:eB
87 5 ad2antrr φeyA¬yeAFin
88 fvexd φeyA¬ye0MV
89 84 87 88 fdmfifsupp φeyA¬yefinSupp0MF
90 89 88 fsuppres φeyA¬yefinSupp0MFe
91 1 47 81 83 86 90 gsumcl φeyA¬yeMFeB
92 91 adantr φeyA¬yeMFe˙MGeMFeB
93 84 78 ffvelcdmd φeyA¬yeFyB
94 93 adantr φeyA¬yeMFe˙MGeFyB
95 71 85 fssresd φeyA¬yeGe:eB
96 ssfi AFineAeFin
97 87 85 96 syl2anc φeyA¬yeeFin
98 95 97 88 fdmfifsupp φeyA¬yefinSupp0MGe
99 1 47 81 83 95 98 gsumcl φeyA¬yeMGeB
100 99 adantr φeyA¬yeMFe˙MGeMGeB
101 simpr φeyA¬yeMFe˙MGeMFe˙MGe
102 simpll φeyA¬yeφ
103 8 ad2antrr φeyA¬yeF˙fG
104 6 ffnd φFFnA
105 7 ffnd φGFnA
106 inidm AA=A
107 eqidd φyAFy=Fy
108 eqidd φyAGy=Gy
109 104 105 5 5 106 107 108 ofrval φF˙fGyAFy˙Gy
110 102 103 78 109 syl3anc φeyA¬yeFy˙Gy
111 110 adantr φeyA¬yeMFe˙MGeFy˙Gy
112 81 adantr φeyA¬yeMFe˙MGeMCMnd
113 1 2 69 70 80 92 94 100 101 111 112 omndadd2d φeyA¬yeMFe˙MGeMFe+MFy˙MGe+MGy
114 97 adantr φeyA¬yeMFe˙MGeeFin
115 6 ad2antrr φeyAzeF:AB
116 simplr φeyAzeeyA
117 elun1 zezey
118 117 adantl φeyAzezey
119 116 118 sseldd φeyAzezA
120 115 119 ffvelcdmd φeyAzeFzB
121 120 ex φeyAzeFzB
122 121 ad2antrr φeyA¬yeMFe˙MGezeFzB
123 122 imp φeyA¬yeMFe˙MGezeFzB
124 74 a1i φeyA¬yeMFe˙MGeyV
125 simplr φeyA¬yeMFe˙MGe¬ye
126 fveq2 z=yFz=Fy
127 1 69 112 114 123 124 125 94 126 gsumunsn φeyA¬yeMFe˙MGeMzeyFz=MzeFz+MFy
128 84 72 feqresmpt φeyA¬yeFey=zeyFz
129 128 oveq2d φeyA¬yeMFey=MzeyFz
130 84 85 feqresmpt φeyA¬yeFe=zeFz
131 130 oveq2d φeyA¬yeMFe=MzeFz
132 131 oveq1d φeyA¬yeMFe+MFy=MzeFz+MFy
133 129 132 eqeq12d φeyA¬yeMFey=MFe+MFyMzeyFz=MzeFz+MFy
134 133 adantr φeyA¬yeMFe˙MGeMFey=MFe+MFyMzeyFz=MzeFz+MFy
135 127 134 mpbird φeyA¬yeMFe˙MGeMFey=MFe+MFy
136 7 adantr φeyAG:AB
137 136 ad2antrr φeyA¬yezeG:AB
138 119 adantlr φeyA¬yezezA
139 137 138 ffvelcdmd φeyA¬yezeGzB
140 74 a1i φeyA¬yeyV
141 simpr φeyA¬ye¬ye
142 fveq2 z=yGz=Gy
143 1 69 81 97 139 140 141 79 142 gsumunsn φeyA¬yeMzeyGz=MzeGz+MGy
144 simpr φeyAeyA
145 136 144 feqresmpt φeyAGey=zeyGz
146 145 oveq2d φeyAMGey=MzeyGz
147 resabs1 eeyGeye=Ge
148 61 147 mp1i φeyAGeye=Ge
149 63 adantl φeyAeA
150 136 149 feqresmpt φeyAGe=zeGz
151 148 150 eqtrd φeyAGeye=zeGz
152 151 oveq2d φeyAMGeye=MzeGz
153 resabs1 yeyGeyy=Gy
154 73 153 mp1i φeyAGeyy=Gy
155 73 144 sstrid φeyAyA
156 136 155 feqresmpt φeyAGy=zyGz
157 154 156 eqtrd φeyAGeyy=zyGz
158 157 oveq2d φeyAMGeyy=MzyGz
159 3 50 syl φMMnd
160 159 adantr φeyAMMnd
161 74 a1i φeyAyV
162 76 a1i φeyAyey
163 144 162 sseldd φeyAyA
164 136 163 ffvelcdmd φeyAGyB
165 142 adantl φeyAz=yGz=Gy
166 1 160 161 164 165 gsumsnd φeyAMzyGz=Gy
167 158 166 eqtrd φeyAMGeyy=Gy
168 152 167 oveq12d φeyAMGeye+MMGeyy=MzeGz+MGy
169 146 168 eqeq12d φeyAMGey=MGeye+MMGeyyMzeyGz=MzeGz+MGy
170 169 adantr φeyA¬yeMGey=MGeye+MMGeyyMzeyGz=MzeGz+MGy
171 143 170 mpbird φeyA¬yeMGey=MGeye+MMGeyy
172 61 147 ax-mp Geye=Ge
173 172 oveq2i MGeye=MGe
174 73 153 ax-mp Geyy=Gy
175 174 oveq2i MGeyy=MGy
176 173 175 oveq12i MGeye+MMGeyy=MGe+MMGy
177 171 176 eqtrdi φeyA¬yeMGey=MGe+MMGy
178 73 72 sstrid φeyA¬yeyA
179 71 178 feqresmpt φeyA¬yeGy=xyGx
180 179 oveq2d φeyA¬yeMGy=MxyGx
181 cmnmnd MCMndMMnd
182 81 181 syl φeyA¬yeMMnd
183 fveq2 x=yGx=Gy
184 1 183 gsumsn MMndyVGyBMxyGx=Gy
185 182 140 79 184 syl3anc φeyA¬yeMxyGx=Gy
186 180 185 eqtrd φeyA¬yeMGy=Gy
187 186 oveq2d φeyA¬yeMGe+MMGy=MGe+MGy
188 177 187 eqtrd φeyA¬yeMGey=MGe+MGy
189 188 adantr φeyA¬yeMFe˙MGeMGey=MGe+MGy
190 113 135 189 3brtr4d φeyA¬yeMFe˙MGeMFey˙MGey
191 66 67 68 190 syl21anc eFin¬yeφeyAMFe˙MGeMFey˙MGey
192 191 exp31 eFin¬yeφeyAMFe˙MGeMFey˙MGey
193 192 a2d eFin¬yeφeyAMFe˙MGeφeyAMFey˙MGey
194 65 193 syl5 eFin¬yeφeAMFe˙MGeφeyAMFey˙MGey
195 17 25 33 41 60 194 findcard2s AFinφAAMFA˙MGA
196 195 imp AFinφAAMFA˙MGA
197 9 196 mpanr2 AFinφMFA˙MGA
198 5 197 mpancom φMFA˙MGA
199 fnresdm FFnAFA=F
200 104 199 syl φFA=F
201 200 oveq2d φMFA=MF
202 fnresdm GFnAGA=G
203 105 202 syl φGA=G
204 203 oveq2d φMGA=MG
205 198 201 204 3brtr3d φMF˙MG