Metamath Proof Explorer


Theorem gsumpart

Description: Express a group sum as a double sum, grouping along a (possibly infinite) partition. (Contributed by Thierry Arnoux, 22-Jun-2024)

Ref Expression
Hypotheses gsumpart.b B=BaseG
gsumpart.z 0˙=0G
gsumpart.g φGCMnd
gsumpart.a φAV
gsumpart.x φXW
gsumpart.f φF:AB
gsumpart.w φfinSupp0˙F
gsumpart.1 φDisjxXC
gsumpart.2 φxXC=A
Assertion gsumpart φGF=GxXGFC

Proof

Step Hyp Ref Expression
1 gsumpart.b B=BaseG
2 gsumpart.z 0˙=0G
3 gsumpart.g φGCMnd
4 gsumpart.a φAV
5 gsumpart.x φXW
6 gsumpart.f φF:AB
7 gsumpart.w φfinSupp0˙F
8 gsumpart.1 φDisjxXC
9 gsumpart.2 φxXC=A
10 eqid xXx×C=xXx×C
11 10 4 5 8 9 2ndresdjuf1o φ2ndxXx×C:xXx×C1-1 ontoA
12 1 2 3 4 6 7 11 gsumf1o φGF=GF2ndxXx×C
13 vsnex xV
14 13 a1i φxXxV
15 4 adantr φxXAV
16 ssidd φAA
17 9 16 eqsstrd φxXCA
18 iunss xXCAxXCA
19 17 18 sylib φxXCA
20 19 r19.21bi φxXCA
21 15 20 ssexd φxXCV
22 14 21 xpexd φxXx×CV
23 22 ralrimiva φxXx×CV
24 iunexg XWxXx×CVxXx×CV
25 5 23 24 syl2anc φxXx×CV
26 relxp Relx×C
27 26 a1i φxXRelx×C
28 27 ralrimiva φxXRelx×C
29 reliun RelxXx×CxXRelx×C
30 28 29 sylibr φRelxXx×C
31 dmiun domxXx×C=xXdomx×C
32 dmxpss domx×Cx
33 32 rgenw xXdomx×Cx
34 ss2iun xXdomx×CxxXdomx×CxXx
35 33 34 ax-mp xXdomx×CxXx
36 31 35 eqsstri domxXx×CxXx
37 iunid xXx=X
38 36 37 sseqtri domxXx×CX
39 38 a1i φdomxXx×CX
40 fo2nd 2nd:VontoV
41 fof 2nd:VontoV2nd:VV
42 40 41 ax-mp 2nd:VV
43 ssv xXx×CV
44 fssres 2nd:VVxXx×CV2ndxXx×C:xXx×CV
45 42 43 44 mp2an 2ndxXx×C:xXx×CV
46 ffn 2ndxXx×C:xXx×CV2ndxXx×CFnxXx×C
47 45 46 mp1i φ2ndxXx×CFnxXx×C
48 djussxp2 xXx×CX×xXC
49 imass2 xXx×CX×xXC2ndxXx×C2ndX×xXC
50 48 49 ax-mp 2ndxXx×C2ndX×xXC
51 ima0 2nd=
52 xpeq1 X=X×xXC=×xXC
53 0xp ×xXC=
54 52 53 eqtrdi X=X×xXC=
55 54 imaeq2d X=2ndX×xXC=2nd
56 iuneq1 X=xXC=xC
57 0iun xC=
58 56 57 eqtrdi X=xXC=
59 51 55 58 3eqtr4a X=2ndX×xXC=xXC
60 59 adantl φX=2ndX×xXC=xXC
61 2ndimaxp X2ndX×xXC=xXC
62 61 adantl φX2ndX×xXC=xXC
63 60 62 pm2.61dane φ2ndX×xXC=xXC
64 63 9 eqtrd φ2ndX×xXC=A
65 50 64 sseqtrid φ2ndxXx×CA
66 resssxp 2ndxXx×CA2ndxXx×CxXx×C×A
67 65 66 sylib φ2ndxXx×CxXx×C×A
68 dff2 2ndxXx×C:xXx×CA2ndxXx×CFnxXx×C2ndxXx×CxXx×C×A
69 47 67 68 sylanbrc φ2ndxXx×C:xXx×CA
70 6 69 fcod φF2ndxXx×C:xXx×CB
71 10 4 5 8 9 2ndresdju φ2ndxXx×C:xXx×C1-1A
72 2 fvexi 0˙V
73 72 a1i φ0˙V
74 6 4 fexd φFV
75 7 71 73 74 fsuppco φfinSupp0˙F2ndxXx×C
76 1 2 3 25 30 5 39 70 75 gsum2d φGF2ndxXx×C=GyXGzxXx×CyyF2ndxXx×Cz
77 nfcsb1v _xy/xC
78 csbeq1a x=yC=y/xC
79 5 21 77 78 iunsnima2 φyXxXx×Cy=y/xC
80 df-ov yF2ndxXx×Cz=F2ndxXx×Cyz
81 69 ad2antrr φyXzxXx×Cy2ndxXx×C:xXx×CA
82 simplr φyXzxXx×CyyX
83 vsnid yy
84 83 a1i φyXzxXx×Cyyy
85 79 eleq2d φyXzxXx×Cyzy/xC
86 85 biimpa φyXzxXx×Cyzy/xC
87 84 86 opelxpd φyXzxXx×Cyyzy×y/xC
88 nfcv _xy
89 88 77 nfxp _xy×y/xC
90 89 nfel2 xyzy×y/xC
91 sneq x=yx=y
92 91 78 xpeq12d x=yx×C=y×y/xC
93 92 eleq2d x=yyzx×Cyzy×y/xC
94 90 93 rspce yXyzy×y/xCxXyzx×C
95 82 87 94 syl2anc φyXzxXx×CyxXyzx×C
96 eliun yzxXx×CxXyzx×C
97 95 96 sylibr φyXzxXx×CyyzxXx×C
98 81 97 fvco3d φyXzxXx×CyF2ndxXx×Cyz=F2ndxXx×Cyz
99 97 fvresd φyXzxXx×Cy2ndxXx×Cyz=2ndyz
100 vex yV
101 vex zV
102 100 101 op2nd 2ndyz=z
103 99 102 eqtrdi φyXzxXx×Cy2ndxXx×Cyz=z
104 103 fveq2d φyXzxXx×CyF2ndxXx×Cyz=Fz
105 98 104 eqtrd φyXzxXx×CyF2ndxXx×Cyz=Fz
106 80 105 eqtrid φyXzxXx×CyyF2ndxXx×Cz=Fz
107 79 106 mpteq12dva φyXzxXx×CyyF2ndxXx×Cz=zy/xCFz
108 6 adantr φyXF:AB
109 imassrn xXx×CyranxXx×C
110 9 xpeq2d φX×xXC=X×A
111 48 110 sseqtrid φxXx×CX×A
112 rnss xXx×CX×AranxXx×CranX×A
113 111 112 syl φranxXx×CranX×A
114 113 adantr φyXranxXx×CranX×A
115 rnxpss ranX×AA
116 114 115 sstrdi φyXranxXx×CA
117 109 116 sstrid φyXxXx×CyA
118 79 117 eqsstrrd φyXy/xCA
119 108 118 feqresmpt φyXFy/xC=zy/xCFz
120 107 119 eqtr4d φyXzxXx×CyyF2ndxXx×Cz=Fy/xC
121 120 oveq2d φyXGzxXx×CyyF2ndxXx×Cz=GFy/xC
122 121 mpteq2dva φyXGzxXx×CyyF2ndxXx×Cz=yXGFy/xC
123 nfcv _yGFC
124 nfcv _xG
125 nfcv _xΣ𝑔
126 nfcv _xF
127 126 77 nfres _xFy/xC
128 124 125 127 nfov _xGFy/xC
129 78 reseq2d x=yFC=Fy/xC
130 129 oveq2d x=yGFC=GFy/xC
131 123 128 130 cbvmpt xXGFC=yXGFy/xC
132 122 131 eqtr4di φyXGzxXx×CyyF2ndxXx×Cz=xXGFC
133 132 oveq2d φGyXGzxXx×CyyF2ndxXx×Cz=GxXGFC
134 12 76 133 3eqtrd φGF=GxXGFC