Metamath Proof Explorer


Theorem hashf1lem1

Description: Lemma for hashf1 . (Contributed by Mario Carneiro, 17-Apr-2015) (Proof shortened by AV, 14-Aug-2024)

Ref Expression
Hypotheses hashf1lem2.1 φAFin
hashf1lem2.2 φBFin
hashf1lem2.3 φ¬zA
hashf1lem2.4 φA+1B
hashf1lem1.5 φF:A1-1B
Assertion hashf1lem1 φf|fA=Ff:Az1-1BBranF

Proof

Step Hyp Ref Expression
1 hashf1lem2.1 φAFin
2 hashf1lem2.2 φBFin
3 hashf1lem2.3 φ¬zA
4 hashf1lem2.4 φA+1B
5 hashf1lem1.5 φF:A1-1B
6 f1setex BFinf|f:Az1-1BV
7 2 6 syl φf|f:Az1-1BV
8 abanssr f|fA=Ff:Az1-1Bf|f:Az1-1B
9 8 a1i φf|fA=Ff:Az1-1Bf|f:Az1-1B
10 7 9 ssexd φf|fA=Ff:Az1-1BV
11 2 difexd φBranFV
12 vex gV
13 reseq1 f=gfA=gA
14 13 eqeq1d f=gfA=FgA=F
15 f1eq1 f=gf:Az1-1Bg:Az1-1B
16 14 15 anbi12d f=gfA=Ff:Az1-1BgA=Fg:Az1-1B
17 12 16 elab gf|fA=Ff:Az1-1BgA=Fg:Az1-1B
18 f1f g:Az1-1Bg:AzB
19 18 ad2antll φgA=Fg:Az1-1Bg:AzB
20 ssun2 zAz
21 vex zV
22 21 snss zAzzAz
23 20 22 mpbir zAz
24 ffvelcdm g:AzBzAzgzB
25 19 23 24 sylancl φgA=Fg:Az1-1BgzB
26 3 adantr φgA=Fg:Az1-1B¬zA
27 df-ima gA=rangA
28 simprl φgA=Fg:Az1-1BgA=F
29 28 rneqd φgA=Fg:Az1-1BrangA=ranF
30 27 29 eqtrid φgA=Fg:Az1-1BgA=ranF
31 30 eleq2d φgA=Fg:Az1-1BgzgAgzranF
32 simprr φgA=Fg:Az1-1Bg:Az1-1B
33 23 a1i φgA=Fg:Az1-1BzAz
34 ssun1 AAz
35 34 a1i φgA=Fg:Az1-1BAAz
36 f1elima g:Az1-1BzAzAAzgzgAzA
37 32 33 35 36 syl3anc φgA=Fg:Az1-1BgzgAzA
38 31 37 bitr3d φgA=Fg:Az1-1BgzranFzA
39 26 38 mtbird φgA=Fg:Az1-1B¬gzranF
40 25 39 eldifd φgA=Fg:Az1-1BgzBranF
41 40 ex φgA=Fg:Az1-1BgzBranF
42 17 41 biimtrid φgf|fA=Ff:Az1-1BgzBranF
43 f1f F:A1-1BF:AB
44 5 43 syl φF:AB
45 44 adantr φxBranFF:AB
46 vex xV
47 21 46 f1osn zx:z1-1 ontox
48 f1of zx:z1-1 ontoxzx:zx
49 47 48 ax-mp zx:zx
50 eldifi xBranFxB
51 50 adantl φxBranFxB
52 51 snssd φxBranFxB
53 fss zx:zxxBzx:zB
54 49 52 53 sylancr φxBranFzx:zB
55 res0 F=
56 res0 zx=
57 55 56 eqtr4i F=zx
58 disjsn Az=¬zA
59 3 58 sylibr φAz=
60 59 adantr φxBranFAz=
61 60 reseq2d φxBranFFAz=F
62 60 reseq2d φxBranFzxAz=zx
63 57 61 62 3eqtr4a φxBranFFAz=zxAz
64 fresaunres1 F:ABzx:zBFAz=zxAzFzxA=F
65 45 54 63 64 syl3anc φxBranFFzxA=F
66 f1f1orn F:A1-1BF:A1-1 ontoranF
67 5 66 syl φF:A1-1 ontoranF
68 67 adantr φxBranFF:A1-1 ontoranF
69 47 a1i φxBranFzx:z1-1 ontox
70 eldifn xBranF¬xranF
71 70 adantl φxBranF¬xranF
72 disjsn ranFx=¬xranF
73 71 72 sylibr φxBranFranFx=
74 f1oun F:A1-1 ontoranFzx:z1-1 ontoxAz=ranFx=Fzx:Az1-1 ontoranFx
75 68 69 60 73 74 syl22anc φxBranFFzx:Az1-1 ontoranFx
76 f1of1 Fzx:Az1-1 ontoranFxFzx:Az1-1ranFx
77 75 76 syl φxBranFFzx:Az1-1ranFx
78 45 frnd φxBranFranFB
79 78 52 unssd φxBranFranFxB
80 f1ss Fzx:Az1-1ranFxranFxBFzx:Az1-1B
81 77 79 80 syl2anc φxBranFFzx:Az1-1B
82 44 1 fexd φFV
83 82 adantr φxBranFFV
84 snex zxV
85 unexg FVzxVFzxV
86 83 84 85 sylancl φxBranFFzxV
87 reseq1 f=FzxfA=FzxA
88 87 eqeq1d f=FzxfA=FFzxA=F
89 f1eq1 f=Fzxf:Az1-1BFzx:Az1-1B
90 88 89 anbi12d f=FzxfA=Ff:Az1-1BFzxA=FFzx:Az1-1B
91 90 elabg FzxVFzxf|fA=Ff:Az1-1BFzxA=FFzx:Az1-1B
92 86 91 syl φxBranFFzxf|fA=Ff:Az1-1BFzxA=FFzx:Az1-1B
93 65 81 92 mpbir2and φxBranFFzxf|fA=Ff:Az1-1B
94 93 ex φxBranFFzxf|fA=Ff:Az1-1B
95 17 anbi1i gf|fA=Ff:Az1-1BxBranFgA=Fg:Az1-1BxBranF
96 simprlr φgA=Fg:Az1-1BxBranFg:Az1-1B
97 f1fn g:Az1-1BgFnAz
98 96 97 syl φgA=Fg:Az1-1BxBranFgFnAz
99 75 adantrl φgA=Fg:Az1-1BxBranFFzx:Az1-1 ontoranFx
100 f1ofn Fzx:Az1-1 ontoranFxFzxFnAz
101 99 100 syl φgA=Fg:Az1-1BxBranFFzxFnAz
102 eqfnfv gFnAzFzxFnAzg=FzxyAzgy=Fzxy
103 98 101 102 syl2anc φgA=Fg:Az1-1BxBranFg=FzxyAzgy=Fzxy
104 fvres yAgAy=gy
105 104 eqcomd yAgy=gAy
106 simprll φgA=Fg:Az1-1BxBranFgA=F
107 106 fveq1d φgA=Fg:Az1-1BxBranFgAy=Fy
108 105 107 sylan9eqr φgA=Fg:Az1-1BxBranFyAgy=Fy
109 5 ad2antrr φgA=Fg:Az1-1BxBranFyAF:A1-1B
110 f1fn F:A1-1BFFnA
111 109 110 syl φgA=Fg:Az1-1BxBranFyAFFnA
112 21 46 fnsn zxFnz
113 112 a1i φgA=Fg:Az1-1BxBranFyAzxFnz
114 59 ad2antrr φgA=Fg:Az1-1BxBranFyAAz=
115 simpr φgA=Fg:Az1-1BxBranFyAyA
116 111 113 114 115 fvun1d φgA=Fg:Az1-1BxBranFyAFzxy=Fy
117 108 116 eqtr4d φgA=Fg:Az1-1BxBranFyAgy=Fzxy
118 117 ralrimiva φgA=Fg:Az1-1BxBranFyAgy=Fzxy
119 118 biantrurd φgA=Fg:Az1-1BxBranFyzgy=FzxyyAgy=Fzxyyzgy=Fzxy
120 ralunb yAzgy=FzxyyAgy=Fzxyyzgy=Fzxy
121 119 120 bitr4di φgA=Fg:Az1-1BxBranFyzgy=FzxyyAzgy=Fzxy
122 44 fdmd φdomF=A
123 122 eleq2d φzdomFzA
124 3 123 mtbird φ¬zdomF
125 124 adantr φgA=Fg:Az1-1BxBranF¬zdomF
126 fsnunfv zVxV¬zdomFFzxz=x
127 21 46 125 126 mp3an12i φgA=Fg:Az1-1BxBranFFzxz=x
128 127 eqeq2d φgA=Fg:Az1-1BxBranFgz=Fzxzgz=x
129 fveq2 y=zgy=gz
130 fveq2 y=zFzxy=Fzxz
131 129 130 eqeq12d y=zgy=Fzxygz=Fzxz
132 21 131 ralsn yzgy=Fzxygz=Fzxz
133 eqcom x=gzgz=x
134 128 132 133 3bitr4g φgA=Fg:Az1-1BxBranFyzgy=Fzxyx=gz
135 103 121 134 3bitr2d φgA=Fg:Az1-1BxBranFg=Fzxx=gz
136 135 ex φgA=Fg:Az1-1BxBranFg=Fzxx=gz
137 95 136 biimtrid φgf|fA=Ff:Az1-1BxBranFg=Fzxx=gz
138 10 11 42 94 137 en3d φf|fA=Ff:Az1-1BBranF