Metamath Proof Explorer


Theorem hgt750lem

Description: Lemma for tgoldbachgtd . (Contributed by Thierry Arnoux, 17-Dec-2021)

Ref Expression
Assertion hgt750lem N01027N7 .348logNN<0 .00042248

Proof

Step Hyp Ref Expression
1 7nn0 70
2 3re 3
3 4re 4
4 8re 8
5 3 4 pm3.2i 48
6 dp2cl 4848
7 5 6 ax-mp 48
8 2 7 pm3.2i 348
9 dp2cl 348348
10 8 9 ax-mp 348
11 dpcl 703487 .348
12 1 10 11 mp2an 7 .348
13 12 a1i N01027N7 .348
14 nn0re N0N
15 14 adantr N01027NN
16 0re 0
17 16 a1i N01027N0
18 10re 10
19 2nn0 20
20 19 1 deccl 270
21 reexpcl 102701027
22 18 20 21 mp2an 1027
23 22 a1i N01027N1027
24 0lt1 0<1
25 1nn 1
26 0nn0 00
27 1nn0 10
28 1re 1
29 9re 9
30 1lt9 1<9
31 28 29 30 ltleii 19
32 25 26 27 31 declei 110
33 expge1 1027011011027
34 18 20 32 33 mp3an 11027
35 16 28 22 ltletri 0<1110270<1027
36 24 34 35 mp2an 0<1027
37 36 a1i N01027N0<1027
38 simpr N01027N1027N
39 17 23 15 37 38 ltletrd N01027N0<N
40 15 39 elrpd N01027NN+
41 40 relogcld N01027NlogN
42 40 rpge0d N01027N0N
43 15 42 resqrtcld N01027NN
44 40 sqrtgt0d N01027N0<N
45 17 44 gtned N01027NN0
46 41 43 45 redivcld N01027NlogNN
47 13 46 remulcld N01027N7 .348logNN
48 elrp 1027+10270<1027
49 22 36 48 mpbir2an 1027+
50 relogcl 1027+log1027
51 49 50 ax-mp log1027
52 22 36 sqrtpclii 1027
53 22 36 sqrtgt0ii 0<1027
54 16 53 gtneii 10270
55 51 52 54 redivcli log10271027
56 55 a1i N01027Nlog10271027
57 13 56 remulcld N01027N7 .348log10271027
58 qssre
59 4nn0 40
60 nn0ssq 0
61 8nn0 80
62 60 61 sselii 8
63 59 62 dp2clq 48
64 19 63 dp2clq 248
65 19 64 dp2clq 2248
66 59 65 dp2clq 42248
67 26 66 dp2clq 042248
68 26 67 dp2clq 0042248
69 26 68 dp2clq 00042248
70 58 69 sselii 00042248
71 dpcl 00000422480 .00042248
72 26 70 71 mp2an 0 .00042248
73 72 a1i N01027N0 .00042248
74 3nn0 30
75 8pos 0<8
76 elrp 8+80<8
77 4 75 76 mpbir2an 8+
78 59 77 rpdp2cl 48+
79 74 78 rpdp2cl 348+
80 1 79 rpdpcl 7 .348+
81 elrp 7 .348+7 .3480<7 .348
82 80 81 mpbi 7 .3480<7 .348
83 82 simpri 0<7 .348
84 16 12 83 ltleii 07 .348
85 84 a1i N01027N07 .348
86 49 a1i N01027N1027+
87 2cn 2
88 87 mullidi 12=2
89 2nn 2
90 89 1 27 31 declei 127
91 2pos 0<2
92 20 nn0rei 27
93 2re 2
94 28 92 93 lemul1i 0<212712272
95 91 94 ax-mp 12712272
96 90 95 mpbi 12272
97 88 96 eqbrtrri 2272
98 1p1e2 1+1=2
99 loge loge=1
100 egt2lt3 2<ee<3
101 100 simpri e<3
102 epr e+
103 3rp 3+
104 logltb e+3+e<3loge<log3
105 102 103 104 mp2an e<3loge<log3
106 101 105 mpbi loge<log3
107 99 106 eqbrtrri 1<log3
108 relogcl 3+log3
109 103 108 ax-mp log3
110 28 28 109 109 lt2addi 1<log31<log31+1<log3+log3
111 107 107 110 mp2an 1+1<log3+log3
112 3cn 3
113 3ne0 30
114 logmul2 3303+log33=log3+log3
115 112 113 103 114 mp3an log33=log3+log3
116 3t3e9 33=9
117 116 fveq2i log33=log9
118 9lt10 9<10
119 29 18 118 ltleii 910
120 9pos 0<9
121 elrp 9+90<9
122 29 120 121 mpbir2an 9+
123 10pos 0<10
124 elrp 10+100<10
125 18 123 124 mpbir2an 10+
126 logleb 9+10+910log9log10
127 122 125 126 mp2an 910log9log10
128 119 127 mpbi log9log10
129 117 128 eqbrtri log33log10
130 115 129 eqbrtrri log3+log3log10
131 28 28 readdcli 1+1
132 109 109 readdcli log3+log3
133 relogcl 10+log10
134 125 133 ax-mp log10
135 131 132 134 ltletri 1+1<log3+log3log3+log3log101+1<log10
136 111 130 135 mp2an 1+1<log10
137 98 136 eqbrtrri 2<log10
138 93 134 ltlei 2<log102log10
139 137 138 ax-mp 2log10
140 16 29 120 ltleii 09
141 89 1 26 140 decltdi 0<27
142 93 134 92 lemul2i 0<272log1027227log10
143 141 142 ax-mp 2log1027227log10
144 139 143 mpbi 27227log10
145 92 93 remulcli 272
146 20 nn0zi 27
147 relogexp 10+27log1027=27log10
148 125 146 147 mp2an log1027=27log10
149 148 51 eqeltrri 27log10
150 93 145 149 letri 227227227log10227log10
151 97 144 150 mp2an 227log10
152 relogef 2loge2=2
153 93 152 ax-mp loge2=2
154 151 153 148 3brtr4i loge2log1027
155 rpefcl 2e2+
156 93 155 ax-mp e2+
157 logleb e2+1027+e21027loge2log1027
158 156 49 157 mp2an e21027loge2log1027
159 154 158 mpbir e21027
160 159 a1i N01027Ne21027
161 86 40 160 38 logdivsqrle N01027NlogNNlog10271027
162 46 56 13 85 161 lemul2ad N01027N7 .348logNN7 .348log10271027
163 3lt10 3<10
164 4lt10 4<10
165 8lt10 8<10
166 59 77 164 165 dp2lt10 48<10
167 74 78 163 166 dp2lt10 348<10
168 7p1e8 7+1=8
169 1 79 61 167 168 dplti 7 .348<8
170 58 62 sselii 8
171 12 170 18 lttri 7 .348<88<107 .348<10
172 169 165 171 mp2an 7 .348<10
173 27 26 deccl 100
174 173 numexp0 100=1
175 0z 0
176 18 175 146 3pm3.2i 10027
177 1lt10 1<10
178 177 141 pm3.2i 1<100<27
179 ltexp2a 100271<100<27100<1027
180 176 178 179 mp2an 100<1027
181 174 180 eqbrtrri 1<1027
182 loggt0b 1027+0<log10271<1027
183 49 182 ax-mp 0<log10271<1027
184 181 183 mpbir 0<log1027
185 51 52 divgt0i 0<log10270<10270<log10271027
186 184 53 185 mp2an 0<log10271027
187 12 18 55 ltmul1i 0<log102710277 .348<107 .348log10271027<10log10271027
188 186 187 ax-mp 7 .348<107 .348log10271027<10log10271027
189 172 188 mpbi 7 .348log10271027<10log10271027
190 18 recni 10
191 expmul 1070201072=1072
192 190 1 19 191 mp3an 1072=1072
193 7t2e14 72=14
194 193 oveq2i 1072=1014
195 192 194 eqtr3i 1072=1014
196 195 fveq2i 1072=1014
197 reexpcl 1070107
198 18 1 197 mp2an 107
199 1 nn0zi 7
200 expgt0 1070<100<107
201 18 199 123 200 mp3an 0<107
202 16 198 201 ltleii 0107
203 sqrtsq 10701071072=107
204 198 202 203 mp2an 1072=107
205 196 204 eqtr3i 1014=107
206 27 59 deccl 140
207 206 nn0zi 14
208 18 207 146 3pm3.2i 101427
209 1lt2 1<2
210 27 19 59 1 164 209 decltc 14<27
211 177 210 pm3.2i 1<1014<27
212 ltexp2a 1014271<1014<271014<1027
213 208 211 212 mp2an 1014<1027
214 reexpcl 101401014
215 18 206 214 mp2an 1014
216 expgt0 10140<100<1014
217 18 207 123 216 mp3an 0<1014
218 16 215 217 ltleii 01014
219 215 218 pm3.2i 101401014
220 16 22 36 ltleii 01027
221 22 220 pm3.2i 102701027
222 sqrtlt 1014010141027010271014<10271014<1027
223 219 221 222 mp2an 1014<10271014<1027
224 213 223 mpbi 1014<1027
225 205 224 eqbrtrri 107<1027
226 198 201 pm3.2i 1070<107
227 52 53 pm3.2i 10270<1027
228 51 184 pm3.2i log10270<log1027
229 ltdiv2 1070<10710270<1027log10270<log1027107<1027log10271027<log1027107
230 226 227 228 229 mp3an 107<1027log10271027<log1027107
231 225 230 mpbi log10271027<log1027107
232 6nn 6
233 232 nngt0i 0<6
234 27 26 232 233 declt 10<16
235 6nn0 60
236 27 235 deccl 160
237 236 nn0rei 16
238 25 235 26 123 declti 0<16
239 elrp 16+160<16
240 237 238 239 mpbir2an 16+
241 logltb 10+16+10<16log10<log16
242 125 240 241 mp2an 10<16log10<log16
243 234 242 mpbi log10<log16
244 2exp4 24=16
245 244 fveq2i log24=log16
246 2rp 2+
247 59 nn0zi 4
248 relogexp 2+4log24=4log2
249 246 247 248 mp2an log24=4log2
250 245 249 eqtr3i log16=4log2
251 243 250 breqtri log10<4log2
252 100 simpli 2<e
253 logltb 2+e+2<elog2<loge
254 246 102 253 mp2an 2<elog2<loge
255 252 254 mpbi log2<loge
256 255 99 breqtri log2<1
257 4pos 0<4
258 relogcl 2+log2
259 246 258 ax-mp log2
260 259 28 3 ltmul2i 0<4log2<14log2<41
261 257 260 ax-mp log2<14log2<41
262 256 261 mpbi 4log2<41
263 4cn 4
264 263 mulridi 41=4
265 262 264 breqtri 4log2<4
266 3 259 remulcli 4log2
267 134 266 3 lttri log10<4log24log2<4log10<4
268 251 265 267 mp2an log10<4
269 134 3 92 ltmul2i 0<27log10<427log10<274
270 141 269 ax-mp log10<427log10<274
271 268 270 mpbi 27log10<274
272 148 271 eqbrtri log1027<274
273 92 3 remulcli 274
274 51 273 198 ltdiv1i 0<107log1027<274log1027107<274107
275 201 274 ax-mp log1027<274log1027107<274107
276 272 275 mpbi log1027107<274107
277 16 201 gtneii 1070
278 51 198 277 redivcli log1027107
279 273 198 277 redivcli 274107
280 55 278 279 lttri log10271027<log1027107log1027107<274107log10271027<274107
281 231 276 280 mp2an log10271027<274107
282 7lt10 7<10
283 2lt10 2<10
284 19 173 1 26 282 283 decltc 27<100
285 10nn 10
286 285 decnncl2 100
287 286 nnrei 100
288 92 287 3 ltmul1i 0<427<100274<1004
289 257 288 ax-mp 27<100274<1004
290 284 289 mpbi 274<1004
291 287 3 remulcli 1004
292 273 291 198 ltdiv1i 0<107274<1004274107<1004107
293 201 292 ax-mp 274<1004274107<1004107
294 290 293 mpbi 274107<1004107
295 8nn 8
296 nnrp 88+
297 295 296 ax-mp 8+
298 59 297 rpdp2cl 48+
299 19 298 rpdp2cl 248+
300 19 299 rpdp2cl 2248+
301 59 300 dpgti 4<4 .2248
302 72 recni 0 .00042248
303 198 recni 107
304 302 303 mulcli 0 .00042248107
305 16 123 gtneii 100
306 190 305 pm3.2i 10100
307 287 recni 100
308 286 nnne0i 1000
309 307 308 pm3.2i 1001000
310 divdiv1 0 .000422481071010010010000 .0004224810710100=0 .0004224810710100
311 304 306 309 310 mp3an 0 .0004224810710100=0 .0004224810710100
312 302 303 190 305 div23i 0 .0004224810710=0 .0004224810107
313 312 oveq1i 0 .0004224810710100=0 .0004224810107100
314 190 307 mulcli 10100
315 190 307 305 308 mulne0i 101000
316 302 303 314 315 divassi 0 .0004224810710100=0 .0004224810710100
317 expp1 1020102+1=10210
318 190 19 317 mp2an 102+1=10210
319 sq10 102=100
320 319 oveq1i 10210=10010
321 307 190 mulcomi 10010=10100
322 318 320 321 3eqtrri 10100=102+1
323 2p1e3 2+1=3
324 323 oveq2i 102+1=103
325 322 324 eqtri 10100=103
326 325 oveq2i 10710100=107103
327 74 nn0zi 3
328 199 327 pm3.2i 73
329 expsub 10100731073=107103
330 306 328 329 mp2an 1073=107103
331 7cn 7
332 4p3e7 4+3=7
333 263 112 332 addcomli 3+4=7
334 331 112 263 333 subaddrii 73=4
335 334 oveq2i 1073=104
336 326 330 335 3eqtr2i 10710100=104
337 336 oveq2i 0 .0004224810710100=0 .00042248104
338 173 numexp1 101=10
339 338 oveq2i 0 .42248101= 0 .4224810
340 59 300 rpdp2cl 42248+
341 25 nnzi 1
342 89 nnzi 2
343 26 340 98 341 342 dpexpp1 0 .42248101=0 .042248102
344 26 340 rpdp2cl 042248+
345 26 344 323 342 327 dpexpp1 0 .042248102=0 .0042248103
346 26 344 rpdp2cl 0042248+
347 3p1e4 3+1=4
348 26 346 347 327 247 dpexpp1 0 .0042248103=0 .00042248104
349 343 345 348 3eqtri 0 .42248101=0 .00042248104
350 59 300 0dp2dp 0 .4224810=4 .2248
351 339 349 350 3eqtr3i 0 .00042248104=4 .2248
352 316 337 351 3eqtri 0 .0004224810710100=4 .2248
353 311 313 352 3eqtr3i 0 .0004224810107100=4 .2248
354 301 353 breqtrri 4<0 .0004224810107100
355 72 18 305 redivcli 0 .0004224810
356 355 198 remulcli 0 .0004224810107
357 286 nngt0i 0<100
358 287 357 pm3.2i 1000<100
359 ltmuldiv2 40 .00042248101071000<1001004<0 .00042248101074<0 .0004224810107100
360 3 356 358 359 mp3an 1004<0 .00042248101074<0 .0004224810107100
361 354 360 mpbir 1004<0 .0004224810107
362 ltdivmul2 10040 .00042248101070<1071004107<0 .00042248101004<0 .0004224810107
363 291 355 226 362 mp3an 1004107<0 .00042248101004<0 .0004224810107
364 361 363 mpbir 1004107<0 .0004224810
365 291 198 277 redivcli 1004107
366 279 365 355 lttri 274107<10041071004107<0 .0004224810274107<0 .0004224810
367 294 364 366 mp2an 274107<0 .0004224810
368 226 simpli 107
369 273 368 277 redivcli 274107
370 55 369 355 lttri log10271027<274107274107<0 .0004224810log10271027<0 .0004224810
371 281 367 370 mp2an log10271027<0 .0004224810
372 125 124 mpbi 100<10
373 ltmuldiv2 log102710270 .00042248100<1010log10271027<0 .00042248log10271027<0 .0004224810
374 55 72 372 373 mp3an 10log10271027<0 .00042248log10271027<0 .0004224810
375 371 374 mpbir 10log10271027<0 .00042248
376 12 55 remulcli 7 .348log10271027
377 18 55 remulcli 10log10271027
378 376 377 72 lttri 7 .348log10271027<10log1027102710log10271027<0 .000422487 .348log10271027<0 .00042248
379 189 375 378 mp2an 7 .348log10271027<0 .00042248
380 379 a1i N01027N7 .348log10271027<0 .00042248
381 47 57 73 162 380 lelttrd N01027N7 .348logNN<0 .00042248