Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Number Theory
The Ternary Goldbach Conjecture: Final Statement
hgt750lem
Next ⟩
hgt750lem2
Metamath Proof Explorer
Ascii
Unicode
Theorem
hgt750lem
Description:
Lemma for
tgoldbachgtd
.
(Contributed by
Thierry Arnoux
, 17-Dec-2021)
Ref
Expression
Assertion
hgt750lem
⊢
N
∈
ℕ
0
∧
10
27
≤
N
→
7
.
348
log
N
N
<
0
.
00042248
Proof
Step
Hyp
Ref
Expression
1
7nn0
⊢
7
∈
ℕ
0
2
3re
⊢
3
∈
ℝ
3
4re
⊢
4
∈
ℝ
4
8re
⊢
8
∈
ℝ
5
3
4
pm3.2i
⊢
4
∈
ℝ
∧
8
∈
ℝ
6
dp2cl
⊢
4
∈
ℝ
∧
8
∈
ℝ
→
48
∈
ℝ
7
5
6
ax-mp
⊢
48
∈
ℝ
8
2
7
pm3.2i
⊢
3
∈
ℝ
∧
48
∈
ℝ
9
dp2cl
⊢
3
∈
ℝ
∧
48
∈
ℝ
→
348
∈
ℝ
10
8
9
ax-mp
⊢
348
∈
ℝ
11
dpcl
⊢
7
∈
ℕ
0
∧
348
∈
ℝ
→
7
.
348
∈
ℝ
12
1
10
11
mp2an
⊢
7
.
348
∈
ℝ
13
12
a1i
⊢
N
∈
ℕ
0
∧
10
27
≤
N
→
7
.
348
∈
ℝ
14
nn0re
⊢
N
∈
ℕ
0
→
N
∈
ℝ
15
14
adantr
⊢
N
∈
ℕ
0
∧
10
27
≤
N
→
N
∈
ℝ
16
0re
⊢
0
∈
ℝ
17
16
a1i
⊢
N
∈
ℕ
0
∧
10
27
≤
N
→
0
∈
ℝ
18
10re
⊢
10
∈
ℝ
19
2nn0
⊢
2
∈
ℕ
0
20
19
1
deccl
⊢
27
∈
ℕ
0
21
reexpcl
⊢
10
∈
ℝ
∧
27
∈
ℕ
0
→
10
27
∈
ℝ
22
18
20
21
mp2an
⊢
10
27
∈
ℝ
23
22
a1i
⊢
N
∈
ℕ
0
∧
10
27
≤
N
→
10
27
∈
ℝ
24
0lt1
⊢
0
<
1
25
1nn
⊢
1
∈
ℕ
26
0nn0
⊢
0
∈
ℕ
0
27
1nn0
⊢
1
∈
ℕ
0
28
1re
⊢
1
∈
ℝ
29
9re
⊢
9
∈
ℝ
30
1lt9
⊢
1
<
9
31
28
29
30
ltleii
⊢
1
≤
9
32
25
26
27
31
declei
⊢
1
≤
10
33
expge1
⊢
10
∈
ℝ
∧
27
∈
ℕ
0
∧
1
≤
10
→
1
≤
10
27
34
18
20
32
33
mp3an
⊢
1
≤
10
27
35
16
28
22
ltletri
⊢
0
<
1
∧
1
≤
10
27
→
0
<
10
27
36
24
34
35
mp2an
⊢
0
<
10
27
37
36
a1i
⊢
N
∈
ℕ
0
∧
10
27
≤
N
→
0
<
10
27
38
simpr
⊢
N
∈
ℕ
0
∧
10
27
≤
N
→
10
27
≤
N
39
17
23
15
37
38
ltletrd
⊢
N
∈
ℕ
0
∧
10
27
≤
N
→
0
<
N
40
15
39
elrpd
⊢
N
∈
ℕ
0
∧
10
27
≤
N
→
N
∈
ℝ
+
41
40
relogcld
⊢
N
∈
ℕ
0
∧
10
27
≤
N
→
log
N
∈
ℝ
42
40
rpge0d
⊢
N
∈
ℕ
0
∧
10
27
≤
N
→
0
≤
N
43
15
42
resqrtcld
⊢
N
∈
ℕ
0
∧
10
27
≤
N
→
N
∈
ℝ
44
40
sqrtgt0d
⊢
N
∈
ℕ
0
∧
10
27
≤
N
→
0
<
N
45
17
44
gtned
⊢
N
∈
ℕ
0
∧
10
27
≤
N
→
N
≠
0
46
41
43
45
redivcld
⊢
N
∈
ℕ
0
∧
10
27
≤
N
→
log
N
N
∈
ℝ
47
13
46
remulcld
⊢
N
∈
ℕ
0
∧
10
27
≤
N
→
7
.
348
log
N
N
∈
ℝ
48
elrp
⊢
10
27
∈
ℝ
+
↔
10
27
∈
ℝ
∧
0
<
10
27
49
22
36
48
mpbir2an
⊢
10
27
∈
ℝ
+
50
relogcl
⊢
10
27
∈
ℝ
+
→
log
10
27
∈
ℝ
51
49
50
ax-mp
⊢
log
10
27
∈
ℝ
52
22
36
sqrtpclii
⊢
10
27
∈
ℝ
53
22
36
sqrtgt0ii
⊢
0
<
10
27
54
16
53
gtneii
⊢
10
27
≠
0
55
51
52
54
redivcli
⊢
log
10
27
10
27
∈
ℝ
56
55
a1i
⊢
N
∈
ℕ
0
∧
10
27
≤
N
→
log
10
27
10
27
∈
ℝ
57
13
56
remulcld
⊢
N
∈
ℕ
0
∧
10
27
≤
N
→
7
.
348
log
10
27
10
27
∈
ℝ
58
qssre
⊢
ℚ
⊆
ℝ
59
4nn0
⊢
4
∈
ℕ
0
60
nn0ssq
⊢
ℕ
0
⊆
ℚ
61
8nn0
⊢
8
∈
ℕ
0
62
60
61
sselii
⊢
8
∈
ℚ
63
59
62
dp2clq
⊢
48
∈
ℚ
64
19
63
dp2clq
⊢
248
∈
ℚ
65
19
64
dp2clq
⊢
2248
∈
ℚ
66
59
65
dp2clq
⊢
42248
∈
ℚ
67
26
66
dp2clq
⊢
042248
∈
ℚ
68
26
67
dp2clq
⊢
0042248
∈
ℚ
69
26
68
dp2clq
⊢
00042248
∈
ℚ
70
58
69
sselii
⊢
00042248
∈
ℝ
71
dpcl
⊢
0
∈
ℕ
0
∧
00042248
∈
ℝ
→
0
.
00042248
∈
ℝ
72
26
70
71
mp2an
⊢
0
.
00042248
∈
ℝ
73
72
a1i
⊢
N
∈
ℕ
0
∧
10
27
≤
N
→
0
.
00042248
∈
ℝ
74
3nn0
⊢
3
∈
ℕ
0
75
8pos
⊢
0
<
8
76
elrp
⊢
8
∈
ℝ
+
↔
8
∈
ℝ
∧
0
<
8
77
4
75
76
mpbir2an
⊢
8
∈
ℝ
+
78
59
77
rpdp2cl
⊢
48
∈
ℝ
+
79
74
78
rpdp2cl
⊢
348
∈
ℝ
+
80
1
79
rpdpcl
⊢
7
.
348
∈
ℝ
+
81
elrp
⊢
7
.
348
∈
ℝ
+
↔
7
.
348
∈
ℝ
∧
0
<
7
.
348
82
80
81
mpbi
⊢
7
.
348
∈
ℝ
∧
0
<
7
.
348
83
82
simpri
⊢
0
<
7
.
348
84
16
12
83
ltleii
⊢
0
≤
7
.
348
85
84
a1i
⊢
N
∈
ℕ
0
∧
10
27
≤
N
→
0
≤
7
.
348
86
49
a1i
⊢
N
∈
ℕ
0
∧
10
27
≤
N
→
10
27
∈
ℝ
+
87
2cn
⊢
2
∈
ℂ
88
87
mullidi
⊢
1
⋅
2
=
2
89
2nn
⊢
2
∈
ℕ
90
89
1
27
31
declei
⊢
1
≤
27
91
2pos
⊢
0
<
2
92
20
nn0rei
⊢
27
∈
ℝ
93
2re
⊢
2
∈
ℝ
94
28
92
93
lemul1i
⊢
0
<
2
→
1
≤
27
↔
1
⋅
2
≤
27
⋅
2
95
91
94
ax-mp
⊢
1
≤
27
↔
1
⋅
2
≤
27
⋅
2
96
90
95
mpbi
⊢
1
⋅
2
≤
27
⋅
2
97
88
96
eqbrtrri
⊢
2
≤
27
⋅
2
98
1p1e2
⊢
1
+
1
=
2
99
loge
⊢
log
e
=
1
100
egt2lt3
⊢
2
<
e
∧
e
<
3
101
100
simpri
⊢
e
<
3
102
epr
⊢
e
∈
ℝ
+
103
3rp
⊢
3
∈
ℝ
+
104
logltb
⊢
e
∈
ℝ
+
∧
3
∈
ℝ
+
→
e
<
3
↔
log
e
<
log
3
105
102
103
104
mp2an
⊢
e
<
3
↔
log
e
<
log
3
106
101
105
mpbi
⊢
log
e
<
log
3
107
99
106
eqbrtrri
⊢
1
<
log
3
108
relogcl
⊢
3
∈
ℝ
+
→
log
3
∈
ℝ
109
103
108
ax-mp
⊢
log
3
∈
ℝ
110
28
28
109
109
lt2addi
⊢
1
<
log
3
∧
1
<
log
3
→
1
+
1
<
log
3
+
log
3
111
107
107
110
mp2an
⊢
1
+
1
<
log
3
+
log
3
112
3cn
⊢
3
∈
ℂ
113
3ne0
⊢
3
≠
0
114
logmul2
⊢
3
∈
ℂ
∧
3
≠
0
∧
3
∈
ℝ
+
→
log
3
⋅
3
=
log
3
+
log
3
115
112
113
103
114
mp3an
⊢
log
3
⋅
3
=
log
3
+
log
3
116
3t3e9
⊢
3
⋅
3
=
9
117
116
fveq2i
⊢
log
3
⋅
3
=
log
9
118
9lt10
⊢
9
<
10
119
29
18
118
ltleii
⊢
9
≤
10
120
9pos
⊢
0
<
9
121
elrp
⊢
9
∈
ℝ
+
↔
9
∈
ℝ
∧
0
<
9
122
29
120
121
mpbir2an
⊢
9
∈
ℝ
+
123
10pos
⊢
0
<
10
124
elrp
⊢
10
∈
ℝ
+
↔
10
∈
ℝ
∧
0
<
10
125
18
123
124
mpbir2an
⊢
10
∈
ℝ
+
126
logleb
⊢
9
∈
ℝ
+
∧
10
∈
ℝ
+
→
9
≤
10
↔
log
9
≤
log
10
127
122
125
126
mp2an
⊢
9
≤
10
↔
log
9
≤
log
10
128
119
127
mpbi
⊢
log
9
≤
log
10
129
117
128
eqbrtri
⊢
log
3
⋅
3
≤
log
10
130
115
129
eqbrtrri
⊢
log
3
+
log
3
≤
log
10
131
28
28
readdcli
⊢
1
+
1
∈
ℝ
132
109
109
readdcli
⊢
log
3
+
log
3
∈
ℝ
133
relogcl
⊢
10
∈
ℝ
+
→
log
10
∈
ℝ
134
125
133
ax-mp
⊢
log
10
∈
ℝ
135
131
132
134
ltletri
⊢
1
+
1
<
log
3
+
log
3
∧
log
3
+
log
3
≤
log
10
→
1
+
1
<
log
10
136
111
130
135
mp2an
⊢
1
+
1
<
log
10
137
98
136
eqbrtrri
⊢
2
<
log
10
138
93
134
ltlei
⊢
2
<
log
10
→
2
≤
log
10
139
137
138
ax-mp
⊢
2
≤
log
10
140
16
29
120
ltleii
⊢
0
≤
9
141
89
1
26
140
decltdi
⊢
0
<
27
142
93
134
92
lemul2i
⊢
0
<
27
→
2
≤
log
10
↔
27
⋅
2
≤
27
log
10
143
141
142
ax-mp
⊢
2
≤
log
10
↔
27
⋅
2
≤
27
log
10
144
139
143
mpbi
⊢
27
⋅
2
≤
27
log
10
145
92
93
remulcli
⊢
27
⋅
2
∈
ℝ
146
20
nn0zi
⊢
27
∈
ℤ
147
relogexp
⊢
10
∈
ℝ
+
∧
27
∈
ℤ
→
log
10
27
=
27
log
10
148
125
146
147
mp2an
⊢
log
10
27
=
27
log
10
149
148
51
eqeltrri
⊢
27
log
10
∈
ℝ
150
93
145
149
letri
⊢
2
≤
27
⋅
2
∧
27
⋅
2
≤
27
log
10
→
2
≤
27
log
10
151
97
144
150
mp2an
⊢
2
≤
27
log
10
152
relogef
⊢
2
∈
ℝ
→
log
e
2
=
2
153
93
152
ax-mp
⊢
log
e
2
=
2
154
151
153
148
3brtr4i
⊢
log
e
2
≤
log
10
27
155
rpefcl
⊢
2
∈
ℝ
→
e
2
∈
ℝ
+
156
93
155
ax-mp
⊢
e
2
∈
ℝ
+
157
logleb
⊢
e
2
∈
ℝ
+
∧
10
27
∈
ℝ
+
→
e
2
≤
10
27
↔
log
e
2
≤
log
10
27
158
156
49
157
mp2an
⊢
e
2
≤
10
27
↔
log
e
2
≤
log
10
27
159
154
158
mpbir
⊢
e
2
≤
10
27
160
159
a1i
⊢
N
∈
ℕ
0
∧
10
27
≤
N
→
e
2
≤
10
27
161
86
40
160
38
logdivsqrle
⊢
N
∈
ℕ
0
∧
10
27
≤
N
→
log
N
N
≤
log
10
27
10
27
162
46
56
13
85
161
lemul2ad
⊢
N
∈
ℕ
0
∧
10
27
≤
N
→
7
.
348
log
N
N
≤
7
.
348
log
10
27
10
27
163
3lt10
⊢
3
<
10
164
4lt10
⊢
4
<
10
165
8lt10
⊢
8
<
10
166
59
77
164
165
dp2lt10
⊢
48
<
10
167
74
78
163
166
dp2lt10
⊢
348
<
10
168
7p1e8
⊢
7
+
1
=
8
169
1
79
61
167
168
dplti
⊢
7
.
348
<
8
170
58
62
sselii
⊢
8
∈
ℝ
171
12
170
18
lttri
⊢
7
.
348
<
8
∧
8
<
10
→
7
.
348
<
10
172
169
165
171
mp2an
⊢
7
.
348
<
10
173
27
26
deccl
⊢
10
∈
ℕ
0
174
173
numexp0
⊢
10
0
=
1
175
0z
⊢
0
∈
ℤ
176
18
175
146
3pm3.2i
⊢
10
∈
ℝ
∧
0
∈
ℤ
∧
27
∈
ℤ
177
1lt10
⊢
1
<
10
178
177
141
pm3.2i
⊢
1
<
10
∧
0
<
27
179
ltexp2a
⊢
10
∈
ℝ
∧
0
∈
ℤ
∧
27
∈
ℤ
∧
1
<
10
∧
0
<
27
→
10
0
<
10
27
180
176
178
179
mp2an
⊢
10
0
<
10
27
181
174
180
eqbrtrri
⊢
1
<
10
27
182
loggt0b
⊢
10
27
∈
ℝ
+
→
0
<
log
10
27
↔
1
<
10
27
183
49
182
ax-mp
⊢
0
<
log
10
27
↔
1
<
10
27
184
181
183
mpbir
⊢
0
<
log
10
27
185
51
52
divgt0i
⊢
0
<
log
10
27
∧
0
<
10
27
→
0
<
log
10
27
10
27
186
184
53
185
mp2an
⊢
0
<
log
10
27
10
27
187
12
18
55
ltmul1i
⊢
0
<
log
10
27
10
27
→
7
.
348
<
10
↔
7
.
348
log
10
27
10
27
<
10
log
10
27
10
27
188
186
187
ax-mp
⊢
7
.
348
<
10
↔
7
.
348
log
10
27
10
27
<
10
log
10
27
10
27
189
172
188
mpbi
⊢
7
.
348
log
10
27
10
27
<
10
log
10
27
10
27
190
18
recni
⊢
10
∈
ℂ
191
expmul
⊢
10
∈
ℂ
∧
7
∈
ℕ
0
∧
2
∈
ℕ
0
→
10
7
⋅
2
=
10
7
2
192
190
1
19
191
mp3an
⊢
10
7
⋅
2
=
10
7
2
193
7t2e14
⊢
7
⋅
2
=
14
194
193
oveq2i
⊢
10
7
⋅
2
=
10
14
195
192
194
eqtr3i
⊢
10
7
2
=
10
14
196
195
fveq2i
⊢
10
7
2
=
10
14
197
reexpcl
⊢
10
∈
ℝ
∧
7
∈
ℕ
0
→
10
7
∈
ℝ
198
18
1
197
mp2an
⊢
10
7
∈
ℝ
199
1
nn0zi
⊢
7
∈
ℤ
200
expgt0
⊢
10
∈
ℝ
∧
7
∈
ℤ
∧
0
<
10
→
0
<
10
7
201
18
199
123
200
mp3an
⊢
0
<
10
7
202
16
198
201
ltleii
⊢
0
≤
10
7
203
sqrtsq
⊢
10
7
∈
ℝ
∧
0
≤
10
7
→
10
7
2
=
10
7
204
198
202
203
mp2an
⊢
10
7
2
=
10
7
205
196
204
eqtr3i
⊢
10
14
=
10
7
206
27
59
deccl
⊢
14
∈
ℕ
0
207
206
nn0zi
⊢
14
∈
ℤ
208
18
207
146
3pm3.2i
⊢
10
∈
ℝ
∧
14
∈
ℤ
∧
27
∈
ℤ
209
1lt2
⊢
1
<
2
210
27
19
59
1
164
209
decltc
⊢
14
<
27
211
177
210
pm3.2i
⊢
1
<
10
∧
14
<
27
212
ltexp2a
⊢
10
∈
ℝ
∧
14
∈
ℤ
∧
27
∈
ℤ
∧
1
<
10
∧
14
<
27
→
10
14
<
10
27
213
208
211
212
mp2an
⊢
10
14
<
10
27
214
reexpcl
⊢
10
∈
ℝ
∧
14
∈
ℕ
0
→
10
14
∈
ℝ
215
18
206
214
mp2an
⊢
10
14
∈
ℝ
216
expgt0
⊢
10
∈
ℝ
∧
14
∈
ℤ
∧
0
<
10
→
0
<
10
14
217
18
207
123
216
mp3an
⊢
0
<
10
14
218
16
215
217
ltleii
⊢
0
≤
10
14
219
215
218
pm3.2i
⊢
10
14
∈
ℝ
∧
0
≤
10
14
220
16
22
36
ltleii
⊢
0
≤
10
27
221
22
220
pm3.2i
⊢
10
27
∈
ℝ
∧
0
≤
10
27
222
sqrtlt
⊢
10
14
∈
ℝ
∧
0
≤
10
14
∧
10
27
∈
ℝ
∧
0
≤
10
27
→
10
14
<
10
27
↔
10
14
<
10
27
223
219
221
222
mp2an
⊢
10
14
<
10
27
↔
10
14
<
10
27
224
213
223
mpbi
⊢
10
14
<
10
27
225
205
224
eqbrtrri
⊢
10
7
<
10
27
226
198
201
pm3.2i
⊢
10
7
∈
ℝ
∧
0
<
10
7
227
52
53
pm3.2i
⊢
10
27
∈
ℝ
∧
0
<
10
27
228
51
184
pm3.2i
⊢
log
10
27
∈
ℝ
∧
0
<
log
10
27
229
ltdiv2
⊢
10
7
∈
ℝ
∧
0
<
10
7
∧
10
27
∈
ℝ
∧
0
<
10
27
∧
log
10
27
∈
ℝ
∧
0
<
log
10
27
→
10
7
<
10
27
↔
log
10
27
10
27
<
log
10
27
10
7
230
226
227
228
229
mp3an
⊢
10
7
<
10
27
↔
log
10
27
10
27
<
log
10
27
10
7
231
225
230
mpbi
⊢
log
10
27
10
27
<
log
10
27
10
7
232
6nn
⊢
6
∈
ℕ
233
232
nngt0i
⊢
0
<
6
234
27
26
232
233
declt
⊢
10
<
16
235
6nn0
⊢
6
∈
ℕ
0
236
27
235
deccl
⊢
16
∈
ℕ
0
237
236
nn0rei
⊢
16
∈
ℝ
238
25
235
26
123
declti
⊢
0
<
16
239
elrp
⊢
16
∈
ℝ
+
↔
16
∈
ℝ
∧
0
<
16
240
237
238
239
mpbir2an
⊢
16
∈
ℝ
+
241
logltb
⊢
10
∈
ℝ
+
∧
16
∈
ℝ
+
→
10
<
16
↔
log
10
<
log
16
242
125
240
241
mp2an
⊢
10
<
16
↔
log
10
<
log
16
243
234
242
mpbi
⊢
log
10
<
log
16
244
2exp4
⊢
2
4
=
16
245
244
fveq2i
⊢
log
2
4
=
log
16
246
2rp
⊢
2
∈
ℝ
+
247
59
nn0zi
⊢
4
∈
ℤ
248
relogexp
⊢
2
∈
ℝ
+
∧
4
∈
ℤ
→
log
2
4
=
4
log
2
249
246
247
248
mp2an
⊢
log
2
4
=
4
log
2
250
245
249
eqtr3i
⊢
log
16
=
4
log
2
251
243
250
breqtri
⊢
log
10
<
4
log
2
252
100
simpli
⊢
2
<
e
253
logltb
⊢
2
∈
ℝ
+
∧
e
∈
ℝ
+
→
2
<
e
↔
log
2
<
log
e
254
246
102
253
mp2an
⊢
2
<
e
↔
log
2
<
log
e
255
252
254
mpbi
⊢
log
2
<
log
e
256
255
99
breqtri
⊢
log
2
<
1
257
4pos
⊢
0
<
4
258
relogcl
⊢
2
∈
ℝ
+
→
log
2
∈
ℝ
259
246
258
ax-mp
⊢
log
2
∈
ℝ
260
259
28
3
ltmul2i
⊢
0
<
4
→
log
2
<
1
↔
4
log
2
<
4
⋅
1
261
257
260
ax-mp
⊢
log
2
<
1
↔
4
log
2
<
4
⋅
1
262
256
261
mpbi
⊢
4
log
2
<
4
⋅
1
263
4cn
⊢
4
∈
ℂ
264
263
mulridi
⊢
4
⋅
1
=
4
265
262
264
breqtri
⊢
4
log
2
<
4
266
3
259
remulcli
⊢
4
log
2
∈
ℝ
267
134
266
3
lttri
⊢
log
10
<
4
log
2
∧
4
log
2
<
4
→
log
10
<
4
268
251
265
267
mp2an
⊢
log
10
<
4
269
134
3
92
ltmul2i
⊢
0
<
27
→
log
10
<
4
↔
27
log
10
<
27
⋅
4
270
141
269
ax-mp
⊢
log
10
<
4
↔
27
log
10
<
27
⋅
4
271
268
270
mpbi
⊢
27
log
10
<
27
⋅
4
272
148
271
eqbrtri
⊢
log
10
27
<
27
⋅
4
273
92
3
remulcli
⊢
27
⋅
4
∈
ℝ
274
51
273
198
ltdiv1i
⊢
0
<
10
7
→
log
10
27
<
27
⋅
4
↔
log
10
27
10
7
<
27
⋅
4
10
7
275
201
274
ax-mp
⊢
log
10
27
<
27
⋅
4
↔
log
10
27
10
7
<
27
⋅
4
10
7
276
272
275
mpbi
⊢
log
10
27
10
7
<
27
⋅
4
10
7
277
16
201
gtneii
⊢
10
7
≠
0
278
51
198
277
redivcli
⊢
log
10
27
10
7
∈
ℝ
279
273
198
277
redivcli
⊢
27
⋅
4
10
7
∈
ℝ
280
55
278
279
lttri
⊢
log
10
27
10
27
<
log
10
27
10
7
∧
log
10
27
10
7
<
27
⋅
4
10
7
→
log
10
27
10
27
<
27
⋅
4
10
7
281
231
276
280
mp2an
⊢
log
10
27
10
27
<
27
⋅
4
10
7
282
7lt10
⊢
7
<
10
283
2lt10
⊢
2
<
10
284
19
173
1
26
282
283
decltc
⊢
27
<
100
285
10nn
⊢
10
∈
ℕ
286
285
decnncl2
⊢
100
∈
ℕ
287
286
nnrei
⊢
100
∈
ℝ
288
92
287
3
ltmul1i
⊢
0
<
4
→
27
<
100
↔
27
⋅
4
<
100
⋅
4
289
257
288
ax-mp
⊢
27
<
100
↔
27
⋅
4
<
100
⋅
4
290
284
289
mpbi
⊢
27
⋅
4
<
100
⋅
4
291
287
3
remulcli
⊢
100
⋅
4
∈
ℝ
292
273
291
198
ltdiv1i
⊢
0
<
10
7
→
27
⋅
4
<
100
⋅
4
↔
27
⋅
4
10
7
<
100
⋅
4
10
7
293
201
292
ax-mp
⊢
27
⋅
4
<
100
⋅
4
↔
27
⋅
4
10
7
<
100
⋅
4
10
7
294
290
293
mpbi
⊢
27
⋅
4
10
7
<
100
⋅
4
10
7
295
8nn
⊢
8
∈
ℕ
296
nnrp
⊢
8
∈
ℕ
→
8
∈
ℝ
+
297
295
296
ax-mp
⊢
8
∈
ℝ
+
298
59
297
rpdp2cl
⊢
48
∈
ℝ
+
299
19
298
rpdp2cl
⊢
248
∈
ℝ
+
300
19
299
rpdp2cl
⊢
2248
∈
ℝ
+
301
59
300
dpgti
⊢
4
<
4
.
2248
302
72
recni
⊢
0
.
00042248
∈
ℂ
303
198
recni
⊢
10
7
∈
ℂ
304
302
303
mulcli
⊢
0
.
00042248
10
7
∈
ℂ
305
16
123
gtneii
⊢
10
≠
0
306
190
305
pm3.2i
⊢
10
∈
ℂ
∧
10
≠
0
307
287
recni
⊢
100
∈
ℂ
308
286
nnne0i
⊢
100
≠
0
309
307
308
pm3.2i
⊢
100
∈
ℂ
∧
100
≠
0
310
divdiv1
⊢
0
.
00042248
10
7
∈
ℂ
∧
10
∈
ℂ
∧
10
≠
0
∧
100
∈
ℂ
∧
100
≠
0
→
0
.
00042248
10
7
10
100
=
0
.
00042248
10
7
10
⋅
100
311
304
306
309
310
mp3an
⊢
0
.
00042248
10
7
10
100
=
0
.
00042248
10
7
10
⋅
100
312
302
303
190
305
div23i
⊢
0
.
00042248
10
7
10
=
0
.
00042248
10
10
7
313
312
oveq1i
⊢
0
.
00042248
10
7
10
100
=
0
.
00042248
10
10
7
100
314
190
307
mulcli
⊢
10
⋅
100
∈
ℂ
315
190
307
305
308
mulne0i
⊢
10
⋅
100
≠
0
316
302
303
314
315
divassi
⊢
0
.
00042248
10
7
10
⋅
100
=
0
.
00042248
10
7
10
⋅
100
317
expp1
⊢
10
∈
ℂ
∧
2
∈
ℕ
0
→
10
2
+
1
=
10
2
⋅
10
318
190
19
317
mp2an
⊢
10
2
+
1
=
10
2
⋅
10
319
sq10
⊢
10
2
=
100
320
319
oveq1i
⊢
10
2
⋅
10
=
100
⋅
10
321
307
190
mulcomi
⊢
100
⋅
10
=
10
⋅
100
322
318
320
321
3eqtrri
⊢
10
⋅
100
=
10
2
+
1
323
2p1e3
⊢
2
+
1
=
3
324
323
oveq2i
⊢
10
2
+
1
=
10
3
325
322
324
eqtri
⊢
10
⋅
100
=
10
3
326
325
oveq2i
⊢
10
7
10
⋅
100
=
10
7
10
3
327
74
nn0zi
⊢
3
∈
ℤ
328
199
327
pm3.2i
⊢
7
∈
ℤ
∧
3
∈
ℤ
329
expsub
⊢
10
∈
ℂ
∧
10
≠
0
∧
7
∈
ℤ
∧
3
∈
ℤ
→
10
7
−
3
=
10
7
10
3
330
306
328
329
mp2an
⊢
10
7
−
3
=
10
7
10
3
331
7cn
⊢
7
∈
ℂ
332
4p3e7
⊢
4
+
3
=
7
333
263
112
332
addcomli
⊢
3
+
4
=
7
334
331
112
263
333
subaddrii
⊢
7
−
3
=
4
335
334
oveq2i
⊢
10
7
−
3
=
10
4
336
326
330
335
3eqtr2i
⊢
10
7
10
⋅
100
=
10
4
337
336
oveq2i
⊢
0
.
00042248
10
7
10
⋅
100
=
0
.
00042248
10
4
338
173
numexp1
⊢
10
1
=
10
339
338
oveq2i
⊢
0
.
42248
10
1
=
0
.
42248
⋅
10
340
59
300
rpdp2cl
⊢
42248
∈
ℝ
+
341
25
nnzi
⊢
1
∈
ℤ
342
89
nnzi
⊢
2
∈
ℤ
343
26
340
98
341
342
dpexpp1
⊢
0
.
42248
10
1
=
0
.
042248
10
2
344
26
340
rpdp2cl
⊢
042248
∈
ℝ
+
345
26
344
323
342
327
dpexpp1
⊢
0
.
042248
10
2
=
0
.
0042248
10
3
346
26
344
rpdp2cl
⊢
0042248
∈
ℝ
+
347
3p1e4
⊢
3
+
1
=
4
348
26
346
347
327
247
dpexpp1
⊢
0
.
0042248
10
3
=
0
.
00042248
10
4
349
343
345
348
3eqtri
⊢
0
.
42248
10
1
=
0
.
00042248
10
4
350
59
300
0dp2dp
⊢
0
.
42248
⋅
10
=
4
.
2248
351
339
349
350
3eqtr3i
⊢
0
.
00042248
10
4
=
4
.
2248
352
316
337
351
3eqtri
⊢
0
.
00042248
10
7
10
⋅
100
=
4
.
2248
353
311
313
352
3eqtr3i
⊢
0
.
00042248
10
10
7
100
=
4
.
2248
354
301
353
breqtrri
⊢
4
<
0
.
00042248
10
10
7
100
355
72
18
305
redivcli
⊢
0
.
00042248
10
∈
ℝ
356
355
198
remulcli
⊢
0
.
00042248
10
10
7
∈
ℝ
357
286
nngt0i
⊢
0
<
100
358
287
357
pm3.2i
⊢
100
∈
ℝ
∧
0
<
100
359
ltmuldiv2
⊢
4
∈
ℝ
∧
0
.
00042248
10
10
7
∈
ℝ
∧
100
∈
ℝ
∧
0
<
100
→
100
⋅
4
<
0
.
00042248
10
10
7
↔
4
<
0
.
00042248
10
10
7
100
360
3
356
358
359
mp3an
⊢
100
⋅
4
<
0
.
00042248
10
10
7
↔
4
<
0
.
00042248
10
10
7
100
361
354
360
mpbir
⊢
100
⋅
4
<
0
.
00042248
10
10
7
362
ltdivmul2
⊢
100
⋅
4
∈
ℝ
∧
0
.
00042248
10
∈
ℝ
∧
10
7
∈
ℝ
∧
0
<
10
7
→
100
⋅
4
10
7
<
0
.
00042248
10
↔
100
⋅
4
<
0
.
00042248
10
10
7
363
291
355
226
362
mp3an
⊢
100
⋅
4
10
7
<
0
.
00042248
10
↔
100
⋅
4
<
0
.
00042248
10
10
7
364
361
363
mpbir
⊢
100
⋅
4
10
7
<
0
.
00042248
10
365
291
198
277
redivcli
⊢
100
⋅
4
10
7
∈
ℝ
366
279
365
355
lttri
⊢
27
⋅
4
10
7
<
100
⋅
4
10
7
∧
100
⋅
4
10
7
<
0
.
00042248
10
→
27
⋅
4
10
7
<
0
.
00042248
10
367
294
364
366
mp2an
⊢
27
⋅
4
10
7
<
0
.
00042248
10
368
226
simpli
⊢
10
7
∈
ℝ
369
273
368
277
redivcli
⊢
27
⋅
4
10
7
∈
ℝ
370
55
369
355
lttri
⊢
log
10
27
10
27
<
27
⋅
4
10
7
∧
27
⋅
4
10
7
<
0
.
00042248
10
→
log
10
27
10
27
<
0
.
00042248
10
371
281
367
370
mp2an
⊢
log
10
27
10
27
<
0
.
00042248
10
372
125
124
mpbi
⊢
10
∈
ℝ
∧
0
<
10
373
ltmuldiv2
⊢
log
10
27
10
27
∈
ℝ
∧
0
.
00042248
∈
ℝ
∧
10
∈
ℝ
∧
0
<
10
→
10
log
10
27
10
27
<
0
.
00042248
↔
log
10
27
10
27
<
0
.
00042248
10
374
55
72
372
373
mp3an
⊢
10
log
10
27
10
27
<
0
.
00042248
↔
log
10
27
10
27
<
0
.
00042248
10
375
371
374
mpbir
⊢
10
log
10
27
10
27
<
0
.
00042248
376
12
55
remulcli
⊢
7
.
348
log
10
27
10
27
∈
ℝ
377
18
55
remulcli
⊢
10
log
10
27
10
27
∈
ℝ
378
376
377
72
lttri
⊢
7
.
348
log
10
27
10
27
<
10
log
10
27
10
27
∧
10
log
10
27
10
27
<
0
.
00042248
→
7
.
348
log
10
27
10
27
<
0
.
00042248
379
189
375
378
mp2an
⊢
7
.
348
log
10
27
10
27
<
0
.
00042248
380
379
a1i
⊢
N
∈
ℕ
0
∧
10
27
≤
N
→
7
.
348
log
10
27
10
27
<
0
.
00042248
381
47
57
73
162
380
lelttrd
⊢
N
∈
ℕ
0
∧
10
27
≤
N
→
7
.
348
log
N
N
<
0
.
00042248