Metamath Proof Explorer


Theorem i1fadd

Description: The sum of two simple functions is a simple function. (Contributed by Mario Carneiro, 18-Jun-2014)

Ref Expression
Hypotheses i1fadd.1 φ F dom 1
i1fadd.2 φ G dom 1
Assertion i1fadd φ F + f G dom 1

Proof

Step Hyp Ref Expression
1 i1fadd.1 φ F dom 1
2 i1fadd.2 φ G dom 1
3 readdcl x y x + y
4 3 adantl φ x y x + y
5 i1ff F dom 1 F :
6 1 5 syl φ F :
7 i1ff G dom 1 G :
8 2 7 syl φ G :
9 reex V
10 9 a1i φ V
11 inidm =
12 4 6 8 10 10 11 off φ F + f G :
13 i1frn F dom 1 ran F Fin
14 1 13 syl φ ran F Fin
15 i1frn G dom 1 ran G Fin
16 2 15 syl φ ran G Fin
17 xpfi ran F Fin ran G Fin ran F × ran G Fin
18 14 16 17 syl2anc φ ran F × ran G Fin
19 eqid u ran F , v ran G u + v = u ran F , v ran G u + v
20 ovex u + v V
21 19 20 fnmpoi u ran F , v ran G u + v Fn ran F × ran G
22 dffn4 u ran F , v ran G u + v Fn ran F × ran G u ran F , v ran G u + v : ran F × ran G onto ran u ran F , v ran G u + v
23 21 22 mpbi u ran F , v ran G u + v : ran F × ran G onto ran u ran F , v ran G u + v
24 fofi ran F × ran G Fin u ran F , v ran G u + v : ran F × ran G onto ran u ran F , v ran G u + v ran u ran F , v ran G u + v Fin
25 18 23 24 sylancl φ ran u ran F , v ran G u + v Fin
26 eqid x + y = x + y
27 rspceov x ran F y ran G x + y = x + y u ran F v ran G x + y = u + v
28 26 27 mp3an3 x ran F y ran G u ran F v ran G x + y = u + v
29 ovex x + y V
30 eqeq1 w = x + y w = u + v x + y = u + v
31 30 2rexbidv w = x + y u ran F v ran G w = u + v u ran F v ran G x + y = u + v
32 29 31 elab x + y w | u ran F v ran G w = u + v u ran F v ran G x + y = u + v
33 28 32 sylibr x ran F y ran G x + y w | u ran F v ran G w = u + v
34 33 adantl φ x ran F y ran G x + y w | u ran F v ran G w = u + v
35 6 ffnd φ F Fn
36 dffn3 F Fn F : ran F
37 35 36 sylib φ F : ran F
38 8 ffnd φ G Fn
39 dffn3 G Fn G : ran G
40 38 39 sylib φ G : ran G
41 34 37 40 10 10 11 off φ F + f G : w | u ran F v ran G w = u + v
42 41 frnd φ ran F + f G w | u ran F v ran G w = u + v
43 19 rnmpo ran u ran F , v ran G u + v = w | u ran F v ran G w = u + v
44 42 43 sseqtrrdi φ ran F + f G ran u ran F , v ran G u + v
45 25 44 ssfid φ ran F + f G Fin
46 12 frnd φ ran F + f G
47 46 ssdifssd φ ran F + f G 0
48 47 sselda φ y ran F + f G 0 y
49 48 recnd φ y ran F + f G 0 y
50 1 2 i1faddlem φ y F + f G -1 y = z ran G F -1 y z G -1 z
51 49 50 syldan φ y ran F + f G 0 F + f G -1 y = z ran G F -1 y z G -1 z
52 16 adantr φ y ran F + f G 0 ran G Fin
53 1 ad2antrr φ y ran F + f G 0 z ran G F dom 1
54 i1fmbf F dom 1 F MblFn
55 53 54 syl φ y ran F + f G 0 z ran G F MblFn
56 6 ad2antrr φ y ran F + f G 0 z ran G F :
57 12 ad2antrr φ y ran F + f G 0 z ran G F + f G :
58 57 frnd φ y ran F + f G 0 z ran G ran F + f G
59 eldifi y ran F + f G 0 y ran F + f G
60 59 ad2antlr φ y ran F + f G 0 z ran G y ran F + f G
61 58 60 sseldd φ y ran F + f G 0 z ran G y
62 8 adantr φ y ran F + f G 0 G :
63 62 frnd φ y ran F + f G 0 ran G
64 63 sselda φ y ran F + f G 0 z ran G z
65 61 64 resubcld φ y ran F + f G 0 z ran G y z
66 mbfimasn F MblFn F : y z F -1 y z dom vol
67 55 56 65 66 syl3anc φ y ran F + f G 0 z ran G F -1 y z dom vol
68 2 ad2antrr φ y ran F + f G 0 z ran G G dom 1
69 i1fmbf G dom 1 G MblFn
70 68 69 syl φ y ran F + f G 0 z ran G G MblFn
71 8 ad2antrr φ y ran F + f G 0 z ran G G :
72 mbfimasn G MblFn G : z G -1 z dom vol
73 70 71 64 72 syl3anc φ y ran F + f G 0 z ran G G -1 z dom vol
74 inmbl F -1 y z dom vol G -1 z dom vol F -1 y z G -1 z dom vol
75 67 73 74 syl2anc φ y ran F + f G 0 z ran G F -1 y z G -1 z dom vol
76 75 ralrimiva φ y ran F + f G 0 z ran G F -1 y z G -1 z dom vol
77 finiunmbl ran G Fin z ran G F -1 y z G -1 z dom vol z ran G F -1 y z G -1 z dom vol
78 52 76 77 syl2anc φ y ran F + f G 0 z ran G F -1 y z G -1 z dom vol
79 51 78 eqeltrd φ y ran F + f G 0 F + f G -1 y dom vol
80 mblvol F + f G -1 y dom vol vol F + f G -1 y = vol * F + f G -1 y
81 79 80 syl φ y ran F + f G 0 vol F + f G -1 y = vol * F + f G -1 y
82 mblss F + f G -1 y dom vol F + f G -1 y
83 79 82 syl φ y ran F + f G 0 F + f G -1 y
84 inss1 F -1 y z G -1 z F -1 y z
85 67 adantrr φ y ran F + f G 0 z ran G z = 0 F -1 y z dom vol
86 mblss F -1 y z dom vol F -1 y z
87 85 86 syl φ y ran F + f G 0 z ran G z = 0 F -1 y z
88 mblvol F -1 y z dom vol vol F -1 y z = vol * F -1 y z
89 85 88 syl φ y ran F + f G 0 z ran G z = 0 vol F -1 y z = vol * F -1 y z
90 simprr φ y ran F + f G 0 z ran G z = 0 z = 0
91 90 oveq2d φ y ran F + f G 0 z ran G z = 0 y z = y 0
92 49 adantr φ y ran F + f G 0 z ran G z = 0 y
93 92 subid1d φ y ran F + f G 0 z ran G z = 0 y 0 = y
94 91 93 eqtrd φ y ran F + f G 0 z ran G z = 0 y z = y
95 94 sneqd φ y ran F + f G 0 z ran G z = 0 y z = y
96 95 imaeq2d φ y ran F + f G 0 z ran G z = 0 F -1 y z = F -1 y
97 96 fveq2d φ y ran F + f G 0 z ran G z = 0 vol F -1 y z = vol F -1 y
98 i1fima2sn F dom 1 y ran F + f G 0 vol F -1 y
99 1 98 sylan φ y ran F + f G 0 vol F -1 y
100 99 adantr φ y ran F + f G 0 z ran G z = 0 vol F -1 y
101 97 100 eqeltrd φ y ran F + f G 0 z ran G z = 0 vol F -1 y z
102 89 101 eqeltrrd φ y ran F + f G 0 z ran G z = 0 vol * F -1 y z
103 ovolsscl F -1 y z G -1 z F -1 y z F -1 y z vol * F -1 y z vol * F -1 y z G -1 z
104 84 87 102 103 mp3an2i φ y ran F + f G 0 z ran G z = 0 vol * F -1 y z G -1 z
105 104 expr φ y ran F + f G 0 z ran G z = 0 vol * F -1 y z G -1 z
106 eldifsn z ran G 0 z ran G z 0
107 inss2 F -1 y z G -1 z G -1 z
108 eldifi z ran G 0 z ran G
109 mblss G -1 z dom vol G -1 z
110 73 109 syl φ y ran F + f G 0 z ran G G -1 z
111 108 110 sylan2 φ y ran F + f G 0 z ran G 0 G -1 z
112 i1fima G dom 1 G -1 z dom vol
113 2 112 syl φ G -1 z dom vol
114 113 ad2antrr φ y ran F + f G 0 z ran G 0 G -1 z dom vol
115 mblvol G -1 z dom vol vol G -1 z = vol * G -1 z
116 114 115 syl φ y ran F + f G 0 z ran G 0 vol G -1 z = vol * G -1 z
117 2 adantr φ y ran F + f G 0 G dom 1
118 i1fima2sn G dom 1 z ran G 0 vol G -1 z
119 117 118 sylan φ y ran F + f G 0 z ran G 0 vol G -1 z
120 116 119 eqeltrrd φ y ran F + f G 0 z ran G 0 vol * G -1 z
121 ovolsscl F -1 y z G -1 z G -1 z G -1 z vol * G -1 z vol * F -1 y z G -1 z
122 107 111 120 121 mp3an2i φ y ran F + f G 0 z ran G 0 vol * F -1 y z G -1 z
123 106 122 sylan2br φ y ran F + f G 0 z ran G z 0 vol * F -1 y z G -1 z
124 123 expr φ y ran F + f G 0 z ran G z 0 vol * F -1 y z G -1 z
125 105 124 pm2.61dne φ y ran F + f G 0 z ran G vol * F -1 y z G -1 z
126 52 125 fsumrecl φ y ran F + f G 0 z ran G vol * F -1 y z G -1 z
127 51 fveq2d φ y ran F + f G 0 vol * F + f G -1 y = vol * z ran G F -1 y z G -1 z
128 107 110 sstrid φ y ran F + f G 0 z ran G F -1 y z G -1 z
129 128 125 jca φ y ran F + f G 0 z ran G F -1 y z G -1 z vol * F -1 y z G -1 z
130 129 ralrimiva φ y ran F + f G 0 z ran G F -1 y z G -1 z vol * F -1 y z G -1 z
131 ovolfiniun ran G Fin z ran G F -1 y z G -1 z vol * F -1 y z G -1 z vol * z ran G F -1 y z G -1 z z ran G vol * F -1 y z G -1 z
132 52 130 131 syl2anc φ y ran F + f G 0 vol * z ran G F -1 y z G -1 z z ran G vol * F -1 y z G -1 z
133 127 132 eqbrtrd φ y ran F + f G 0 vol * F + f G -1 y z ran G vol * F -1 y z G -1 z
134 ovollecl F + f G -1 y z ran G vol * F -1 y z G -1 z vol * F + f G -1 y z ran G vol * F -1 y z G -1 z vol * F + f G -1 y
135 83 126 133 134 syl3anc φ y ran F + f G 0 vol * F + f G -1 y
136 81 135 eqeltrd φ y ran F + f G 0 vol F + f G -1 y
137 12 45 79 136 i1fd φ F + f G dom 1