Metamath Proof Explorer


Theorem i1fd

Description: A simplified set of assumptions to show that a given function is simple. (Contributed by Mario Carneiro, 26-Jun-2014)

Ref Expression
Hypotheses i1fd.1 φF:
i1fd.2 φranFFin
i1fd.3 φxranF0F-1xdomvol
i1fd.4 φxranF0volF-1x
Assertion i1fd φFdom1

Proof

Step Hyp Ref Expression
1 i1fd.1 φF:
2 i1fd.2 φranFFin
3 i1fd.3 φxranF0F-1xdomvol
4 i1fd.4 φxranF0volF-1x
5 1 ad2antrr φxran.0xF:
6 ffun F:FunF
7 funcnvcnv FunFFunF-1-1
8 imadif FunF-1-1F-1x=F-1F-1x
9 5 6 7 8 4syl φxran.0xF-1x=F-1F-1x
10 ioof .:*×*𝒫
11 frn .:*×*𝒫ran.𝒫
12 10 11 ax-mp ran.𝒫
13 12 sseli xran.x𝒫
14 13 elpwid xran.x
15 14 ad2antlr φxran.0xx
16 dfss4 xx=x
17 15 16 sylib φxran.0xx=x
18 17 imaeq2d φxran.0xF-1x=F-1x
19 9 18 eqtr3d φxran.0xF-1F-1x=F-1x
20 fimacnv F:F-1=
21 5 20 syl φxran.0xF-1=
22 rembl domvol
23 21 22 eqeltrdi φxran.0xF-1domvol
24 1 adantr φ¬0yF:
25 inpreima FunFF-1yranF=F-1yF-1ranF
26 iunid xyranFx=yranF
27 26 imaeq2i F-1xyranFx=F-1yranF
28 imaiun F-1xyranFx=xyranFF-1x
29 27 28 eqtr3i F-1yranF=xyranFF-1x
30 cnvimass F-1ydomF
31 cnvimarndm F-1ranF=domF
32 30 31 sseqtrri F-1yF-1ranF
33 df-ss F-1yF-1ranFF-1yF-1ranF=F-1y
34 32 33 mpbi F-1yF-1ranF=F-1y
35 25 29 34 3eqtr3g FunFxyranFF-1x=F-1y
36 24 6 35 3syl φ¬0yxyranFF-1x=F-1y
37 2 adantr φ¬0yranFFin
38 inss2 yranFranF
39 ssfi ranFFinyranFranFyranFFin
40 37 38 39 sylancl φ¬0yyranFFin
41 simpll φ¬0yxyranFφ
42 elinel1 0yranF0y
43 42 con3i ¬0y¬0yranF
44 43 adantl φ¬0y¬0yranF
45 disjsn yranF0=¬0yranF
46 44 45 sylibr φ¬0yyranF0=
47 reldisj yranFranFyranF0=yranFranF0
48 38 47 ax-mp yranF0=yranFranF0
49 46 48 sylib φ¬0yyranFranF0
50 49 sselda φ¬0yxyranFxranF0
51 41 50 3 syl2anc φ¬0yxyranFF-1xdomvol
52 51 ralrimiva φ¬0yxyranFF-1xdomvol
53 finiunmbl yranFFinxyranFF-1xdomvolxyranFF-1xdomvol
54 40 52 53 syl2anc φ¬0yxyranFF-1xdomvol
55 36 54 eqeltrrd φ¬0yF-1ydomvol
56 55 ex φ¬0yF-1ydomvol
57 56 alrimiv φy¬0yF-1ydomvol
58 57 ad2antrr φxran.0xy¬0yF-1ydomvol
59 elndif 0x¬0x
60 59 adantl φxran.0x¬0x
61 reex V
62 61 difexi xV
63 eleq2 y=x0y0x
64 63 notbid y=x¬0y¬0x
65 imaeq2 y=xF-1y=F-1x
66 65 eleq1d y=xF-1ydomvolF-1xdomvol
67 64 66 imbi12d y=x¬0yF-1ydomvol¬0xF-1xdomvol
68 62 67 spcv y¬0yF-1ydomvol¬0xF-1xdomvol
69 58 60 68 sylc φxran.0xF-1xdomvol
70 difmbl F-1domvolF-1xdomvolF-1F-1xdomvol
71 23 69 70 syl2anc φxran.0xF-1F-1xdomvol
72 19 71 eqeltrrd φxran.0xF-1xdomvol
73 eleq2 y=x0y0x
74 73 notbid y=x¬0y¬0x
75 imaeq2 y=xF-1y=F-1x
76 75 eleq1d y=xF-1ydomvolF-1xdomvol
77 74 76 imbi12d y=x¬0yF-1ydomvol¬0xF-1xdomvol
78 77 spvv y¬0yF-1ydomvol¬0xF-1xdomvol
79 57 78 syl φ¬0xF-1xdomvol
80 79 imp φ¬0xF-1xdomvol
81 80 adantlr φxran.¬0xF-1xdomvol
82 72 81 pm2.61dan φxran.F-1xdomvol
83 82 ralrimiva φxran.F-1xdomvol
84 ismbf F:FMblFnxran.F-1xdomvol
85 1 84 syl φFMblFnxran.F-1xdomvol
86 83 85 mpbird φFMblFn
87 mblvol F-1ydomvolvolF-1y=vol*F-1y
88 55 87 syl φ¬0yvolF-1y=vol*F-1y
89 mblss F-1ydomvolF-1y
90 55 89 syl φ¬0yF-1y
91 mblvol F-1xdomvolvolF-1x=vol*F-1x
92 51 91 syl φ¬0yxyranFvolF-1x=vol*F-1x
93 41 50 4 syl2anc φ¬0yxyranFvolF-1x
94 92 93 eqeltrrd φ¬0yxyranFvol*F-1x
95 40 94 fsumrecl φ¬0yxyranFvol*F-1x
96 36 fveq2d φ¬0yvol*xyranFF-1x=vol*F-1y
97 mblss F-1xdomvolF-1x
98 51 97 syl φ¬0yxyranFF-1x
99 98 94 jca φ¬0yxyranFF-1xvol*F-1x
100 99 ralrimiva φ¬0yxyranFF-1xvol*F-1x
101 ovolfiniun yranFFinxyranFF-1xvol*F-1xvol*xyranFF-1xxyranFvol*F-1x
102 40 100 101 syl2anc φ¬0yvol*xyranFF-1xxyranFvol*F-1x
103 96 102 eqbrtrrd φ¬0yvol*F-1yxyranFvol*F-1x
104 ovollecl F-1yxyranFvol*F-1xvol*F-1yxyranFvol*F-1xvol*F-1y
105 90 95 103 104 syl3anc φ¬0yvol*F-1y
106 88 105 eqeltrd φ¬0yvolF-1y
107 106 ex φ¬0yvolF-1y
108 107 alrimiv φy¬0yvolF-1y
109 neldifsn ¬00
110 61 difexi 0V
111 eleq2 y=00y00
112 111 notbid y=0¬0y¬00
113 imaeq2 y=0F-1y=F-10
114 113 fveq2d y=0volF-1y=volF-10
115 114 eleq1d y=0volF-1yvolF-10
116 112 115 imbi12d y=0¬0yvolF-1y¬00volF-10
117 110 116 spcv y¬0yvolF-1y¬00volF-10
118 108 109 117 mpisyl φvolF-10
119 1 2 118 3jca φF:ranFFinvolF-10
120 isi1f Fdom1FMblFnF:ranFFinvolF-10
121 86 119 120 sylanbrc φFdom1