| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iunfo.1 |
|
| 2 |
|
iundomg.2 |
|
| 3 |
|
iundomg.3 |
|
| 4 |
|
brdomi |
|
| 5 |
4
|
adantl |
|
| 6 |
|
f1f |
|
| 7 |
|
reldom |
|
| 8 |
7
|
brrelex2i |
|
| 9 |
7
|
brrelex1i |
|
| 10 |
8 9
|
elmapd |
|
| 11 |
10
|
adantl |
|
| 12 |
6 11
|
imbitrrid |
|
| 13 |
|
ssiun2 |
|
| 14 |
13
|
adantr |
|
| 15 |
14
|
sseld |
|
| 16 |
12 15
|
syld |
|
| 17 |
16
|
ancrd |
|
| 18 |
17
|
eximdv |
|
| 19 |
5 18
|
mpd |
|
| 20 |
|
df-rex |
|
| 21 |
19 20
|
sylibr |
|
| 22 |
21
|
ralimiaa |
|
| 23 |
3 22
|
syl |
|
| 24 |
|
nfv |
|
| 25 |
|
nfiu1 |
|
| 26 |
|
nfcv |
|
| 27 |
|
nfcsb1v |
|
| 28 |
|
nfcv |
|
| 29 |
26 27 28
|
nff1 |
|
| 30 |
25 29
|
nfrexw |
|
| 31 |
|
csbeq1a |
|
| 32 |
|
f1eq2 |
|
| 33 |
31 32
|
syl |
|
| 34 |
33
|
rexbidv |
|
| 35 |
24 30 34
|
cbvralw |
|
| 36 |
23 35
|
sylib |
|
| 37 |
|
f1eq1 |
|
| 38 |
37
|
acni3 |
|
| 39 |
2 36 38
|
syl2anc |
|
| 40 |
|
nfv |
|
| 41 |
|
nfcv |
|
| 42 |
41 27 28
|
nff1 |
|
| 43 |
|
fveq2 |
|
| 44 |
|
f1eq1 |
|
| 45 |
43 44
|
syl |
|
| 46 |
|
f1eq2 |
|
| 47 |
31 46
|
syl |
|
| 48 |
45 47
|
bitrd |
|
| 49 |
40 42 48
|
cbvralw |
|
| 50 |
|
df-ne |
|
| 51 |
|
acnrcl |
|
| 52 |
2 51
|
syl |
|
| 53 |
|
r19.2z |
|
| 54 |
8
|
rexlimivw |
|
| 55 |
53 54
|
syl |
|
| 56 |
55
|
expcom |
|
| 57 |
3 56
|
syl |
|
| 58 |
|
xpexg |
|
| 59 |
52 57 58
|
syl6an |
|
| 60 |
50 59
|
biimtrrid |
|
| 61 |
|
xpeq1 |
|
| 62 |
|
0xp |
|
| 63 |
|
0ex |
|
| 64 |
62 63
|
eqeltri |
|
| 65 |
61 64
|
eqeltrdi |
|
| 66 |
60 65
|
pm2.61d2 |
|
| 67 |
1
|
eleq2i |
|
| 68 |
|
eliun |
|
| 69 |
67 68
|
bitri |
|
| 70 |
|
r19.29 |
|
| 71 |
|
xp1st |
|
| 72 |
71
|
ad2antll |
|
| 73 |
|
elsni |
|
| 74 |
72 73
|
syl |
|
| 75 |
|
simpl |
|
| 76 |
74 75
|
eqeltrd |
|
| 77 |
74
|
fveq2d |
|
| 78 |
77
|
fveq1d |
|
| 79 |
|
f1f |
|
| 80 |
79
|
ad2antrl |
|
| 81 |
|
xp2nd |
|
| 82 |
81
|
ad2antll |
|
| 83 |
80 82
|
ffvelcdmd |
|
| 84 |
78 83
|
eqeltrd |
|
| 85 |
76 84
|
opelxpd |
|
| 86 |
85
|
rexlimiva |
|
| 87 |
70 86
|
syl |
|
| 88 |
87
|
ex |
|
| 89 |
69 88
|
biimtrid |
|
| 90 |
|
fvex |
|
| 91 |
|
fvex |
|
| 92 |
90 91
|
opth |
|
| 93 |
|
simpr |
|
| 94 |
93
|
fveq2d |
|
| 95 |
94
|
fveq1d |
|
| 96 |
95
|
eqeq2d |
|
| 97 |
|
djussxp |
|
| 98 |
1 97
|
eqsstri |
|
| 99 |
|
simprl |
|
| 100 |
98 99
|
sselid |
|
| 101 |
100
|
adantr |
|
| 102 |
|
xp1st |
|
| 103 |
101 102
|
syl |
|
| 104 |
|
simpll |
|
| 105 |
|
nfcv |
|
| 106 |
|
nfcsb1v |
|
| 107 |
105 106 28
|
nff1 |
|
| 108 |
|
fveq2 |
|
| 109 |
|
f1eq1 |
|
| 110 |
108 109
|
syl |
|
| 111 |
|
csbeq1a |
|
| 112 |
|
f1eq2 |
|
| 113 |
111 112
|
syl |
|
| 114 |
110 113
|
bitrd |
|
| 115 |
107 114
|
rspc |
|
| 116 |
103 104 115
|
sylc |
|
| 117 |
106
|
nfel2 |
|
| 118 |
74
|
eqcomd |
|
| 119 |
118 111
|
syl |
|
| 120 |
82 119
|
eleqtrd |
|
| 121 |
120
|
ex |
|
| 122 |
117 121
|
rexlimi |
|
| 123 |
70 122
|
syl |
|
| 124 |
123
|
ex |
|
| 125 |
69 124
|
biimtrid |
|
| 126 |
125
|
imp |
|
| 127 |
126
|
adantrr |
|
| 128 |
127
|
adantr |
|
| 129 |
125
|
ralrimiv |
|
| 130 |
|
fveq2 |
|
| 131 |
|
fveq2 |
|
| 132 |
131
|
csbeq1d |
|
| 133 |
130 132
|
eleq12d |
|
| 134 |
133
|
rspccva |
|
| 135 |
129 134
|
sylan |
|
| 136 |
135
|
adantrl |
|
| 137 |
136
|
adantr |
|
| 138 |
93
|
csbeq1d |
|
| 139 |
137 138
|
eleqtrrd |
|
| 140 |
|
f1fveq |
|
| 141 |
116 128 139 140
|
syl12anc |
|
| 142 |
96 141
|
bitr3d |
|
| 143 |
142
|
pm5.32da |
|
| 144 |
|
simprr |
|
| 145 |
98 144
|
sselid |
|
| 146 |
|
xpopth |
|
| 147 |
100 145 146
|
syl2anc |
|
| 148 |
143 147
|
bitrd |
|
| 149 |
92 148
|
bitrid |
|
| 150 |
149
|
ex |
|
| 151 |
89 150
|
dom2d |
|
| 152 |
66 151
|
syl5com |
|
| 153 |
49 152
|
biimtrrid |
|
| 154 |
153
|
adantld |
|
| 155 |
154
|
exlimdv |
|
| 156 |
39 155
|
mpd |
|