Metamath Proof Explorer


Theorem lgsdchr

Description: The Legendre symbol function X ( m ) = ( m /L N ) , where N is an odd positive number, is a real Dirichlet character modulo N . (Contributed by Mario Carneiro, 28-Apr-2016)

Ref Expression
Hypotheses lgsdchr.g G=DChrN
lgsdchr.z Z=/N
lgsdchr.d D=BaseG
lgsdchr.b B=BaseZ
lgsdchr.l L=ℤRHomZ
lgsdchr.x X=yBιh|my=Lmh=m/LN
Assertion lgsdchr N¬2NXDX:B

Proof

Step Hyp Ref Expression
1 lgsdchr.g G=DChrN
2 lgsdchr.z Z=/N
3 lgsdchr.d D=BaseG
4 lgsdchr.b B=BaseZ
5 lgsdchr.l L=ℤRHomZ
6 lgsdchr.x X=yBιh|my=Lmh=m/LN
7 iotaex ιh|my=Lmh=m/LNV
8 7 a1i N¬2NyBιh|my=Lmh=m/LNV
9 6 a1i N¬2NX=yBιh|my=Lmh=m/LN
10 nnnn0 NN0
11 10 adantr N¬2NN0
12 2 4 5 znzrhfo N0L:ontoB
13 11 12 syl N¬2NL:ontoB
14 foelrn L:ontoBxBax=La
15 13 14 sylan N¬2NxBax=La
16 1 2 3 4 5 6 lgsdchrval N¬2NaXLa=a/LN
17 simpr N¬2Naa
18 nnz NN
19 18 ad2antrr N¬2NaN
20 lgscl aNa/LN
21 17 19 20 syl2anc N¬2Naa/LN
22 21 zred N¬2Naa/LN
23 16 22 eqeltrd N¬2NaXLa
24 fveq2 x=LaXx=XLa
25 24 eleq1d x=LaXxXLa
26 23 25 syl5ibrcom N¬2Nax=LaXx
27 26 rexlimdva N¬2Nax=LaXx
28 27 imp N¬2Nax=LaXx
29 15 28 syldan N¬2NxBXx
30 8 9 29 fmpt2d N¬2NX:B
31 ax-resscn
32 fss X:BX:B
33 30 31 32 sylancl N¬2NX:B
34 eqid UnitZ=UnitZ
35 4 34 unitss UnitZB
36 foelrn L:ontoByBby=Lb
37 13 36 sylan N¬2NyBby=Lb
38 15 37 anim12dan N¬2NxByBax=Laby=Lb
39 reeanv abx=Lay=Lbax=Laby=Lb
40 17 adantrr N¬2Naba
41 simprr N¬2Nabb
42 11 adantr N¬2NabN0
43 lgsdirnn0 abN0ab/LN=a/LNb/LN
44 40 41 42 43 syl3anc N¬2Nabab/LN=a/LNb/LN
45 2 zncrng N0ZCRing
46 11 45 syl N¬2NZCRing
47 crngring ZCRingZRing
48 46 47 syl N¬2NZRing
49 48 adantr N¬2NabZRing
50 5 zrhrhm ZRingLringRingHomZ
51 49 50 syl N¬2NabLringRingHomZ
52 zringbas =Basering
53 zringmulr ×=ring
54 eqid Z=Z
55 52 53 54 rhmmul LringRingHomZabLab=LaZLb
56 51 40 41 55 syl3anc N¬2NabLab=LaZLb
57 56 fveq2d N¬2NabXLab=XLaZLb
58 zmulcl abab
59 1 2 3 4 5 6 lgsdchrval N¬2NabXLab=ab/LN
60 58 59 sylan2 N¬2NabXLab=ab/LN
61 57 60 eqtr3d N¬2NabXLaZLb=ab/LN
62 16 adantrr N¬2NabXLa=a/LN
63 1 2 3 4 5 6 lgsdchrval N¬2NbXLb=b/LN
64 63 adantrl N¬2NabXLb=b/LN
65 62 64 oveq12d N¬2NabXLaXLb=a/LNb/LN
66 44 61 65 3eqtr4d N¬2NabXLaZLb=XLaXLb
67 oveq12 x=Lay=LbxZy=LaZLb
68 67 fveq2d x=Lay=LbXxZy=XLaZLb
69 fveq2 y=LbXy=XLb
70 24 69 oveqan12d x=Lay=LbXxXy=XLaXLb
71 68 70 eqeq12d x=Lay=LbXxZy=XxXyXLaZLb=XLaXLb
72 66 71 syl5ibrcom N¬2Nabx=Lay=LbXxZy=XxXy
73 72 rexlimdvva N¬2Nabx=Lay=LbXxZy=XxXy
74 39 73 biimtrrid N¬2Nax=Laby=LbXxZy=XxXy
75 74 imp N¬2Nax=Laby=LbXxZy=XxXy
76 38 75 syldan N¬2NxByBXxZy=XxXy
77 76 ralrimivva N¬2NxByBXxZy=XxXy
78 ss2ralv UnitZBxByBXxZy=XxXyxUnitZyUnitZXxZy=XxXy
79 35 77 78 mpsyl N¬2NxUnitZyUnitZXxZy=XxXy
80 1z 1
81 1 2 3 4 5 6 lgsdchrval N¬2N1XL1=1/LN
82 80 81 mpan2 N¬2NXL1=1/LN
83 eqid 1Z=1Z
84 5 83 zrh1 ZRingL1=1Z
85 48 84 syl N¬2NL1=1Z
86 85 fveq2d N¬2NXL1=X1Z
87 18 adantr N¬2NN
88 1lgs N1/LN=1
89 87 88 syl N¬2N1/LN=1
90 82 86 89 3eqtr3d N¬2NX1Z=1
91 lgsne0 aNa/LN0agcdN=1
92 17 19 91 syl2anc N¬2Naa/LN0agcdN=1
93 92 biimpd N¬2Naa/LN0agcdN=1
94 16 neeq1d N¬2NaXLa0a/LN0
95 2 34 5 znunit N0aLaUnitZagcdN=1
96 11 95 sylan N¬2NaLaUnitZagcdN=1
97 93 94 96 3imtr4d N¬2NaXLa0LaUnitZ
98 24 neeq1d x=LaXx0XLa0
99 eleq1 x=LaxUnitZLaUnitZ
100 98 99 imbi12d x=LaXx0xUnitZXLa0LaUnitZ
101 97 100 syl5ibrcom N¬2Nax=LaXx0xUnitZ
102 101 rexlimdva N¬2Nax=LaXx0xUnitZ
103 102 imp N¬2Nax=LaXx0xUnitZ
104 15 103 syldan N¬2NxBXx0xUnitZ
105 104 ralrimiva N¬2NxBXx0xUnitZ
106 79 90 105 3jca N¬2NxUnitZyUnitZXxZy=XxXyX1Z=1xBXx0xUnitZ
107 simpl N¬2NN
108 1 2 4 34 107 3 dchrelbas3 N¬2NXDX:BxUnitZyUnitZXxZy=XxXyX1Z=1xBXx0xUnitZ
109 33 106 108 mpbir2and N¬2NXD
110 109 30 jca N¬2NXDX:B