Metamath Proof Explorer


Theorem lgsquadlem3

Description: Lemma for lgsquad . (Contributed by Mario Carneiro, 18-Jun-2015)

Ref Expression
Hypotheses lgseisen.1 φP2
lgseisen.2 φQ2
lgseisen.3 φPQ
lgsquad.4 M=P12
lgsquad.5 N=Q12
lgsquad.6 S=xy|x1My1NyP<xQ
Assertion lgsquadlem3 φP/LQQ/LP=1 M N

Proof

Step Hyp Ref Expression
1 lgseisen.1 φP2
2 lgseisen.2 φQ2
3 lgseisen.3 φPQ
4 lgsquad.4 M=P12
5 lgsquad.5 N=Q12
6 lgsquad.6 S=xy|x1My1NyP<xQ
7 3 necomd φQP
8 eleq1w x=zx1Mz1M
9 eleq1w y=wy1Nw1N
10 8 9 bi2anan9 x=zy=wx1My1Nz1Mw1N
11 10 biancomd x=zy=wx1My1Nw1Nz1M
12 oveq1 x=zxQ=zQ
13 oveq1 y=wyP=wP
14 12 13 breqan12d x=zy=wxQ<yPzQ<wP
15 11 14 anbi12d x=zy=wx1My1NxQ<yPw1Nz1MzQ<wP
16 15 ancoms y=wx=zx1My1NxQ<yPw1Nz1MzQ<wP
17 16 cbvopabv yx|x1My1NxQ<yP=wz|w1Nz1MzQ<wP
18 2 1 7 5 4 17 lgsquadlem2 φP/LQ=1yx|x1My1NxQ<yP
19 relopabv Relxy|x1My1NxQ<yP
20 fzfid φ1MFin
21 fzfid φ1NFin
22 xpfi 1MFin1NFin1M×1NFin
23 20 21 22 syl2anc φ1M×1NFin
24 opabssxp xy|x1My1NxQ<yP1M×1N
25 ssfi 1M×1NFinxy|x1My1NxQ<yP1M×1Nxy|x1My1NxQ<yPFin
26 23 24 25 sylancl φxy|x1My1NxQ<yPFin
27 cnven Relxy|x1My1NxQ<yPxy|x1My1NxQ<yPFinxy|x1My1NxQ<yPxy|x1My1NxQ<yP-1
28 19 26 27 sylancr φxy|x1My1NxQ<yPxy|x1My1NxQ<yP-1
29 cnvopab xy|x1My1NxQ<yP-1=yx|x1My1NxQ<yP
30 28 29 breqtrdi φxy|x1My1NxQ<yPyx|x1My1NxQ<yP
31 hasheni xy|x1My1NxQ<yPyx|x1My1NxQ<yPxy|x1My1NxQ<yP=yx|x1My1NxQ<yP
32 30 31 syl φxy|x1My1NxQ<yP=yx|x1My1NxQ<yP
33 32 oveq2d φ1xy|x1My1NxQ<yP=1yx|x1My1NxQ<yP
34 18 33 eqtr4d φP/LQ=1xy|x1My1NxQ<yP
35 1 2 3 4 5 6 lgsquadlem2 φQ/LP=1S
36 34 35 oveq12d φP/LQQ/LP=1xy|x1My1NxQ<yP1S
37 neg1cn 1
38 37 a1i φ1
39 opabssxp xy|x1My1NyP<xQ1M×1N
40 6 39 eqsstri S1M×1N
41 ssfi 1M×1NFinS1M×1NSFin
42 23 40 41 sylancl φSFin
43 hashcl SFinS0
44 42 43 syl φS0
45 hashcl xy|x1My1NxQ<yPFinxy|x1My1NxQ<yP0
46 26 45 syl φxy|x1My1NxQ<yP0
47 38 44 46 expaddd φ1xy|x1My1NxQ<yP+S=1xy|x1My1NxQ<yP1S
48 2 eldifad φQ
49 48 adantr φx1My1NQ
50 prmnn QQ
51 49 50 syl φx1My1NQ
52 2 5 gausslemma2dlem0b φN
53 52 adantr φx1My1NN
54 53 nnzd φx1My1NN
55 prmz QQ
56 49 55 syl φx1My1NQ
57 peano2zm QQ1
58 56 57 syl φx1My1NQ1
59 53 nnred φx1My1NN
60 58 zred φx1My1NQ1
61 prmuz2 QQ2
62 49 61 syl φx1My1NQ2
63 uz2m1nn Q2Q1
64 62 63 syl φx1My1NQ1
65 64 nnrpd φx1My1NQ1+
66 rphalflt Q1+Q12<Q1
67 65 66 syl φx1My1NQ12<Q1
68 5 67 eqbrtrid φx1My1NN<Q1
69 59 60 68 ltled φx1My1NNQ1
70 eluz2 Q1NNQ1NQ1
71 54 58 69 70 syl3anbrc φx1My1NQ1N
72 fzss2 Q1N1N1Q1
73 71 72 syl φx1My1N1N1Q1
74 simprr φx1My1Ny1N
75 73 74 sseldd φx1My1Ny1Q1
76 fzm1ndvds Qy1Q1¬Qy
77 51 75 76 syl2anc φx1My1N¬Qy
78 7 adantr φx1My1NQP
79 1 eldifad φP
80 79 adantr φx1My1NP
81 prmrp QPQgcdP=1QP
82 49 80 81 syl2anc φx1My1NQgcdP=1QP
83 78 82 mpbird φx1My1NQgcdP=1
84 prmz PP
85 80 84 syl φx1My1NP
86 elfzelz y1Ny
87 86 ad2antll φx1My1Ny
88 coprmdvds QPyQPyQgcdP=1Qy
89 56 85 87 88 syl3anc φx1My1NQPyQgcdP=1Qy
90 83 89 mpan2d φx1My1NQPyQy
91 77 90 mtod φx1My1N¬QPy
92 prmnn PP
93 80 92 syl φx1My1NP
94 93 nncnd φx1My1NP
95 elfznn y1Ny
96 95 ad2antll φx1My1Ny
97 96 nncnd φx1My1Ny
98 94 97 mulcomd φx1My1NPy=yP
99 98 breq2d φx1My1NQPyQyP
100 91 99 mtbid φx1My1N¬QyP
101 elfzelz x1Mx
102 101 ad2antrl φx1My1Nx
103 dvdsmul2 xQQxQ
104 102 56 103 syl2anc φx1My1NQxQ
105 breq2 xQ=yPQxQQyP
106 104 105 syl5ibcom φx1My1NxQ=yPQyP
107 106 necon3bd φx1My1N¬QyPxQyP
108 100 107 mpd φx1My1NxQyP
109 elfznn x1Mx
110 109 ad2antrl φx1My1Nx
111 110 51 nnmulcld φx1My1NxQ
112 111 nnred φx1My1NxQ
113 96 93 nnmulcld φx1My1NyP
114 113 nnred φx1My1NyP
115 112 114 lttri2d φx1My1NxQyPxQ<yPyP<xQ
116 108 115 mpbid φx1My1NxQ<yPyP<xQ
117 116 ex φx1My1NxQ<yPyP<xQ
118 117 pm4.71rd φx1My1NxQ<yPyP<xQx1My1N
119 ancom xQ<yPyP<xQx1My1Nx1My1NxQ<yPyP<xQ
120 118 119 bitr2di φx1My1NxQ<yPyP<xQx1My1N
121 120 opabbidv φxy|x1My1NxQ<yPyP<xQ=xy|x1My1N
122 unopab xy|x1My1NxQ<yPxy|x1My1NyP<xQ=xy|x1My1NxQ<yPx1My1NyP<xQ
123 6 uneq2i xy|x1My1NxQ<yPS=xy|x1My1NxQ<yPxy|x1My1NyP<xQ
124 andi x1My1NxQ<yPyP<xQx1My1NxQ<yPx1My1NyP<xQ
125 124 opabbii xy|x1My1NxQ<yPyP<xQ=xy|x1My1NxQ<yPx1My1NyP<xQ
126 122 123 125 3eqtr4i xy|x1My1NxQ<yPS=xy|x1My1NxQ<yPyP<xQ
127 df-xp 1M×1N=xy|x1My1N
128 121 126 127 3eqtr4g φxy|x1My1NxQ<yPS=1M×1N
129 128 fveq2d φxy|x1My1NxQ<yPS=1M×1N
130 inopab xy|x1My1NxQ<yPxy|x1My1NyP<xQ=xy|x1My1NxQ<yPx1My1NyP<xQ
131 6 ineq2i xy|x1My1NxQ<yPS=xy|x1My1NxQ<yPxy|x1My1NyP<xQ
132 anandi x1My1NxQ<yPyP<xQx1My1NxQ<yPx1My1NyP<xQ
133 132 opabbii xy|x1My1NxQ<yPyP<xQ=xy|x1My1NxQ<yPx1My1NyP<xQ
134 130 131 133 3eqtr4i xy|x1My1NxQ<yPS=xy|x1My1NxQ<yPyP<xQ
135 ltnsym2 xQyP¬xQ<yPyP<xQ
136 112 114 135 syl2anc φx1My1N¬xQ<yPyP<xQ
137 136 ex φx1My1N¬xQ<yPyP<xQ
138 imnan x1My1N¬xQ<yPyP<xQ¬x1My1NxQ<yPyP<xQ
139 137 138 sylib φ¬x1My1NxQ<yPyP<xQ
140 139 nexdv φ¬yx1My1NxQ<yPyP<xQ
141 140 nexdv φ¬xyx1My1NxQ<yPyP<xQ
142 opabn0 xy|x1My1NxQ<yPyP<xQxyx1My1NxQ<yPyP<xQ
143 142 necon1bbii ¬xyx1My1NxQ<yPyP<xQxy|x1My1NxQ<yPyP<xQ=
144 141 143 sylib φxy|x1My1NxQ<yPyP<xQ=
145 134 144 eqtrid φxy|x1My1NxQ<yPS=
146 hashun xy|x1My1NxQ<yPFinSFinxy|x1My1NxQ<yPS=xy|x1My1NxQ<yPS=xy|x1My1NxQ<yP+S
147 26 42 145 146 syl3anc φxy|x1My1NxQ<yPS=xy|x1My1NxQ<yP+S
148 hashxp 1MFin1NFin1M×1N=1M1N
149 20 21 148 syl2anc φ1M×1N=1M1N
150 1 4 gausslemma2dlem0b φM
151 150 nnnn0d φM0
152 hashfz1 M01M=M
153 151 152 syl φ1M=M
154 52 nnnn0d φN0
155 hashfz1 N01N=N
156 154 155 syl φ1N=N
157 153 156 oveq12d φ1M1N= M N
158 149 157 eqtrd φ1M×1N= M N
159 129 147 158 3eqtr3d φxy|x1My1NxQ<yP+S= M N
160 159 oveq2d φ1xy|x1My1NxQ<yP+S=1 M N
161 36 47 160 3eqtr2d φP/LQQ/LP=1 M N