Metamath Proof Explorer


Theorem lhop

Description: L'Hôpital's Rule. If I is an open set of the reals, F and G are real functions on A containing all of I except possibly B , which are differentiable everywhere on I \ { B } , F and G both approach 0, and the limit of F ' ( x ) / G ' ( x ) at B is C , then the limit F ( x ) / G ( x ) at B also exists and equals C . This is Metamath 100 proof #64. (Contributed by Mario Carneiro, 30-Dec-2016)

Ref Expression
Hypotheses lhop.a φ A
lhop.f φ F : A
lhop.g φ G : A
lhop.i φ I topGen ran .
lhop.b φ B I
lhop.d D = I B
lhop.if φ D dom F
lhop.ig φ D dom G
lhop.f0 φ 0 F lim B
lhop.g0 φ 0 G lim B
lhop.gn0 φ ¬ 0 G D
lhop.gd0 φ ¬ 0 G D
lhop.c φ C z D F z G z lim B
Assertion lhop φ C z D F z G z lim B

Proof

Step Hyp Ref Expression
1 lhop.a φ A
2 lhop.f φ F : A
3 lhop.g φ G : A
4 lhop.i φ I topGen ran .
5 lhop.b φ B I
6 lhop.d D = I B
7 lhop.if φ D dom F
8 lhop.ig φ D dom G
9 lhop.f0 φ 0 F lim B
10 lhop.g0 φ 0 G lim B
11 lhop.gn0 φ ¬ 0 G D
12 lhop.gd0 φ ¬ 0 G D
13 lhop.c φ C z D F z G z lim B
14 eqid abs 2 = abs 2
15 14 rexmet abs 2 ∞Met
16 15 a1i φ abs 2 ∞Met
17 eqid MetOpen abs 2 = MetOpen abs 2
18 14 17 tgioo topGen ran . = MetOpen abs 2
19 18 mopni2 abs 2 ∞Met I topGen ran . B I r + B ball abs 2 r I
20 16 4 5 19 syl3anc φ r + B ball abs 2 r I
21 elssuni I topGen ran . I topGen ran .
22 uniretop = topGen ran .
23 21 22 sseqtrrdi I topGen ran . I
24 4 23 syl φ I
25 24 5 sseldd φ B
26 rpre r + r
27 14 bl2ioo B r B ball abs 2 r = B r B + r
28 25 26 27 syl2an φ r + B ball abs 2 r = B r B + r
29 28 sseq1d φ r + B ball abs 2 r I B r B + r I
30 25 adantr φ r + B r B + r I B
31 simprl φ r + B r B + r I r +
32 31 rpred φ r + B r B + r I r
33 30 32 resubcld φ r + B r B + r I B r
34 33 rexrd φ r + B r B + r I B r *
35 30 31 ltsubrpd φ r + B r B + r I B r < B
36 2 adantr φ r + B r B + r I F : A
37 ssun1 B r B B r B B B + r
38 unass B B r B B B + r = B B r B B B + r
39 uncom B B r B = B r B B
40 39 uneq1i B B r B B B + r = B r B B B B + r
41 38 40 eqtr3i B B r B B B + r = B r B B B B + r
42 30 rexrd φ r + B r B + r I B *
43 30 32 readdcld φ r + B r B + r I B + r
44 43 rexrd φ r + B r B + r I B + r *
45 30 31 ltaddrpd φ r + B r B + r I B < B + r
46 ioojoin B r * B * B + r * B r < B B < B + r B r B B B B + r = B r B + r
47 34 42 44 35 45 46 syl32anc φ r + B r B + r I B r B B B B + r = B r B + r
48 41 47 eqtrid φ r + B r B + r I B B r B B B + r = B r B + r
49 elioo2 B r * B + r * B B r B + r B B r < B B < B + r
50 34 44 49 syl2anc φ r + B r B + r I B B r B + r B B r < B B < B + r
51 30 35 45 50 mpbir3and φ r + B r B + r I B B r B + r
52 51 snssd φ r + B r B + r I B B r B + r
53 incom B B r B B B + r = B r B B B + r B
54 ubioo ¬ B B r B
55 lbioo ¬ B B B + r
56 54 55 pm3.2ni ¬ B B r B B B B + r
57 elun B B r B B B + r B B r B B B B + r
58 56 57 mtbir ¬ B B r B B B + r
59 disjsn B r B B B + r B = ¬ B B r B B B + r
60 58 59 mpbir B r B B B + r B =
61 53 60 eqtri B B r B B B + r =
62 uneqdifeq B B r B + r B B r B B B + r = B B r B B B + r = B r B + r B r B + r B = B r B B B + r
63 52 61 62 sylancl φ r + B r B + r I B B r B B B + r = B r B + r B r B + r B = B r B B B + r
64 48 63 mpbid φ r + B r B + r I B r B + r B = B r B B B + r
65 37 64 sseqtrrid φ r + B r B + r I B r B B r B + r B
66 ssdif B r B + r I B r B + r B I B
67 66 ad2antll φ r + B r B + r I B r B + r B I B
68 67 6 sseqtrrdi φ r + B r B + r I B r B + r B D
69 ax-resscn
70 69 a1i φ
71 fss F : A F : A
72 2 69 71 sylancl φ F : A
73 70 72 1 dvbss φ dom F A
74 7 73 sstrd φ D A
75 74 adantr φ r + B r B + r I D A
76 68 75 sstrd φ r + B r B + r I B r B + r B A
77 65 76 sstrd φ r + B r B + r I B r B A
78 36 77 fssresd φ r + B r B + r I F B r B : B r B
79 3 adantr φ r + B r B + r I G : A
80 79 77 fssresd φ r + B r B + r I G B r B : B r B
81 69 a1i φ r + B r B + r I
82 72 adantr φ r + B r B + r I F : A
83 1 adantr φ r + B r B + r I A
84 ioossre B r B
85 84 a1i φ r + B r B + r I B r B
86 eqid TopOpen fld = TopOpen fld
87 86 tgioo2 topGen ran . = TopOpen fld 𝑡
88 86 87 dvres F : A A B r B D F B r B = F int topGen ran . B r B
89 81 82 83 85 88 syl22anc φ r + B r B + r I D F B r B = F int topGen ran . B r B
90 retop topGen ran . Top
91 iooretop B r B topGen ran .
92 isopn3i topGen ran . Top B r B topGen ran . int topGen ran . B r B = B r B
93 90 91 92 mp2an int topGen ran . B r B = B r B
94 93 reseq2i F int topGen ran . B r B = F B r B
95 89 94 eqtrdi φ r + B r B + r I D F B r B = F B r B
96 95 dmeqd φ r + B r B + r I dom F B r B = dom F B r B
97 65 68 sstrd φ r + B r B + r I B r B D
98 7 adantr φ r + B r B + r I D dom F
99 97 98 sstrd φ r + B r B + r I B r B dom F
100 ssdmres B r B dom F dom F B r B = B r B
101 99 100 sylib φ r + B r B + r I dom F B r B = B r B
102 96 101 eqtrd φ r + B r B + r I dom F B r B = B r B
103 fss G : A G : A
104 3 69 103 sylancl φ G : A
105 104 adantr φ r + B r B + r I G : A
106 86 87 dvres G : A A B r B D G B r B = G int topGen ran . B r B
107 81 105 83 85 106 syl22anc φ r + B r B + r I D G B r B = G int topGen ran . B r B
108 93 reseq2i G int topGen ran . B r B = G B r B
109 107 108 eqtrdi φ r + B r B + r I D G B r B = G B r B
110 109 dmeqd φ r + B r B + r I dom G B r B = dom G B r B
111 8 adantr φ r + B r B + r I D dom G
112 97 111 sstrd φ r + B r B + r I B r B dom G
113 ssdmres B r B dom G dom G B r B = B r B
114 112 113 sylib φ r + B r B + r I dom G B r B = B r B
115 110 114 eqtrd φ r + B r B + r I dom G B r B = B r B
116 limcresi F lim B F B r B lim B
117 9 adantr φ r + B r B + r I 0 F lim B
118 116 117 sselid φ r + B r B + r I 0 F B r B lim B
119 limcresi G lim B G B r B lim B
120 10 adantr φ r + B r B + r I 0 G lim B
121 119 120 sselid φ r + B r B + r I 0 G B r B lim B
122 df-ima G B r B = ran G B r B
123 imass2 B r B D G B r B G D
124 97 123 syl φ r + B r B + r I G B r B G D
125 122 124 eqsstrrid φ r + B r B + r I ran G B r B G D
126 11 adantr φ r + B r B + r I ¬ 0 G D
127 125 126 ssneldd φ r + B r B + r I ¬ 0 ran G B r B
128 109 rneqd φ r + B r B + r I ran G B r B = ran G B r B
129 df-ima G B r B = ran G B r B
130 128 129 eqtr4di φ r + B r B + r I ran G B r B = G B r B
131 imass2 B r B D G B r B G D
132 97 131 syl φ r + B r B + r I G B r B G D
133 130 132 eqsstrd φ r + B r B + r I ran G B r B G D
134 12 adantr φ r + B r B + r I ¬ 0 G D
135 133 134 ssneldd φ r + B r B + r I ¬ 0 ran G B r B
136 limcresi z D F z G z lim B z D F z G z B r B lim B
137 97 resmptd φ r + B r B + r I z D F z G z B r B = z B r B F z G z
138 95 fveq1d φ r + B r B + r I F B r B z = F B r B z
139 fvres z B r B F B r B z = F z
140 138 139 sylan9eq φ r + B r B + r I z B r B F B r B z = F z
141 109 fveq1d φ r + B r B + r I G B r B z = G B r B z
142 fvres z B r B G B r B z = G z
143 141 142 sylan9eq φ r + B r B + r I z B r B G B r B z = G z
144 140 143 oveq12d φ r + B r B + r I z B r B F B r B z G B r B z = F z G z
145 144 mpteq2dva φ r + B r B + r I z B r B F B r B z G B r B z = z B r B F z G z
146 137 145 eqtr4d φ r + B r B + r I z D F z G z B r B = z B r B F B r B z G B r B z
147 146 oveq1d φ r + B r B + r I z D F z G z B r B lim B = z B r B F B r B z G B r B z lim B
148 136 147 sseqtrid φ r + B r B + r I z D F z G z lim B z B r B F B r B z G B r B z lim B
149 13 adantr φ r + B r B + r I C z D F z G z lim B
150 148 149 sseldd φ r + B r B + r I C z B r B F B r B z G B r B z lim B
151 34 30 35 78 80 102 115 118 121 127 135 150 lhop2 φ r + B r B + r I C z B r B F B r B z G B r B z lim B
152 65 resmptd φ r + B r B + r I z B r B + r B F z G z B r B = z B r B F z G z
153 fvres z B r B F B r B z = F z
154 fvres z B r B G B r B z = G z
155 153 154 oveq12d z B r B F B r B z G B r B z = F z G z
156 155 mpteq2ia z B r B F B r B z G B r B z = z B r B F z G z
157 152 156 eqtr4di φ r + B r B + r I z B r B + r B F z G z B r B = z B r B F B r B z G B r B z
158 157 oveq1d φ r + B r B + r I z B r B + r B F z G z B r B lim B = z B r B F B r B z G B r B z lim B
159 151 158 eleqtrrd φ r + B r B + r I C z B r B + r B F z G z B r B lim B
160 ssun2 B B + r B r B B B + r
161 160 64 sseqtrrid φ r + B r B + r I B B + r B r B + r B
162 161 76 sstrd φ r + B r B + r I B B + r A
163 36 162 fssresd φ r + B r B + r I F B B + r : B B + r
164 79 162 fssresd φ r + B r B + r I G B B + r : B B + r
165 ioossre B B + r
166 165 a1i φ r + B r B + r I B B + r
167 86 87 dvres F : A A B B + r D F B B + r = F int topGen ran . B B + r
168 81 82 83 166 167 syl22anc φ r + B r B + r I D F B B + r = F int topGen ran . B B + r
169 iooretop B B + r topGen ran .
170 isopn3i topGen ran . Top B B + r topGen ran . int topGen ran . B B + r = B B + r
171 90 169 170 mp2an int topGen ran . B B + r = B B + r
172 171 reseq2i F int topGen ran . B B + r = F B B + r
173 168 172 eqtrdi φ r + B r B + r I D F B B + r = F B B + r
174 173 dmeqd φ r + B r B + r I dom F B B + r = dom F B B + r
175 161 68 sstrd φ r + B r B + r I B B + r D
176 175 98 sstrd φ r + B r B + r I B B + r dom F
177 ssdmres B B + r dom F dom F B B + r = B B + r
178 176 177 sylib φ r + B r B + r I dom F B B + r = B B + r
179 174 178 eqtrd φ r + B r B + r I dom F B B + r = B B + r
180 86 87 dvres G : A A B B + r D G B B + r = G int topGen ran . B B + r
181 81 105 83 166 180 syl22anc φ r + B r B + r I D G B B + r = G int topGen ran . B B + r
182 171 reseq2i G int topGen ran . B B + r = G B B + r
183 181 182 eqtrdi φ r + B r B + r I D G B B + r = G B B + r
184 183 dmeqd φ r + B r B + r I dom G B B + r = dom G B B + r
185 175 111 sstrd φ r + B r B + r I B B + r dom G
186 ssdmres B B + r dom G dom G B B + r = B B + r
187 185 186 sylib φ r + B r B + r I dom G B B + r = B B + r
188 184 187 eqtrd φ r + B r B + r I dom G B B + r = B B + r
189 limcresi F lim B F B B + r lim B
190 189 117 sselid φ r + B r B + r I 0 F B B + r lim B
191 limcresi G lim B G B B + r lim B
192 191 120 sselid φ r + B r B + r I 0 G B B + r lim B
193 df-ima G B B + r = ran G B B + r
194 imass2 B B + r D G B B + r G D
195 175 194 syl φ r + B r B + r I G B B + r G D
196 193 195 eqsstrrid φ r + B r B + r I ran G B B + r G D
197 196 126 ssneldd φ r + B r B + r I ¬ 0 ran G B B + r
198 183 rneqd φ r + B r B + r I ran G B B + r = ran G B B + r
199 df-ima G B B + r = ran G B B + r
200 198 199 eqtr4di φ r + B r B + r I ran G B B + r = G B B + r
201 imass2 B B + r D G B B + r G D
202 175 201 syl φ r + B r B + r I G B B + r G D
203 200 202 eqsstrd φ r + B r B + r I ran G B B + r G D
204 203 134 ssneldd φ r + B r B + r I ¬ 0 ran G B B + r
205 limcresi z D F z G z lim B z D F z G z B B + r lim B
206 175 resmptd φ r + B r B + r I z D F z G z B B + r = z B B + r F z G z
207 173 fveq1d φ r + B r B + r I F B B + r z = F B B + r z
208 fvres z B B + r F B B + r z = F z
209 207 208 sylan9eq φ r + B r B + r I z B B + r F B B + r z = F z
210 183 fveq1d φ r + B r B + r I G B B + r z = G B B + r z
211 fvres z B B + r G B B + r z = G z
212 210 211 sylan9eq φ r + B r B + r I z B B + r G B B + r z = G z
213 209 212 oveq12d φ r + B r B + r I z B B + r F B B + r z G B B + r z = F z G z
214 213 mpteq2dva φ r + B r B + r I z B B + r F B B + r z G B B + r z = z B B + r F z G z
215 206 214 eqtr4d φ r + B r B + r I z D F z G z B B + r = z B B + r F B B + r z G B B + r z
216 215 oveq1d φ r + B r B + r I z D F z G z B B + r lim B = z B B + r F B B + r z G B B + r z lim B
217 205 216 sseqtrid φ r + B r B + r I z D F z G z lim B z B B + r F B B + r z G B B + r z lim B
218 217 149 sseldd φ r + B r B + r I C z B B + r F B B + r z G B B + r z lim B
219 30 44 45 163 164 179 188 190 192 197 204 218 lhop1 φ r + B r B + r I C z B B + r F B B + r z G B B + r z lim B
220 161 resmptd φ r + B r B + r I z B r B + r B F z G z B B + r = z B B + r F z G z
221 fvres z B B + r F B B + r z = F z
222 fvres z B B + r G B B + r z = G z
223 221 222 oveq12d z B B + r F B B + r z G B B + r z = F z G z
224 223 mpteq2ia z B B + r F B B + r z G B B + r z = z B B + r F z G z
225 220 224 eqtr4di φ r + B r B + r I z B r B + r B F z G z B B + r = z B B + r F B B + r z G B B + r z
226 225 oveq1d φ r + B r B + r I z B r B + r B F z G z B B + r lim B = z B B + r F B B + r z G B B + r z lim B
227 219 226 eleqtrrd φ r + B r B + r I C z B r B + r B F z G z B B + r lim B
228 159 227 elind φ r + B r B + r I C z B r B + r B F z G z B r B lim B z B r B + r B F z G z B B + r lim B
229 68 resmptd φ r + B r B + r I z D F z G z B r B + r B = z B r B + r B F z G z
230 229 oveq1d φ r + B r B + r I z D F z G z B r B + r B lim B = z B r B + r B F z G z lim B
231 74 sselda φ z D z A
232 2 ffvelrnda φ z A F z
233 231 232 syldan φ z D F z
234 233 recnd φ z D F z
235 3 ffvelrnda φ z A G z
236 231 235 syldan φ z D G z
237 236 recnd φ z D G z
238 11 adantr φ z D ¬ 0 G D
239 3 ffnd φ G Fn A
240 239 adantr φ z D G Fn A
241 74 adantr φ z D D A
242 simpr φ z D z D
243 fnfvima G Fn A D A z D G z G D
244 240 241 242 243 syl3anc φ z D G z G D
245 eleq1 G z = 0 G z G D 0 G D
246 244 245 syl5ibcom φ z D G z = 0 0 G D
247 246 necon3bd φ z D ¬ 0 G D G z 0
248 238 247 mpd φ z D G z 0
249 234 237 248 divcld φ z D F z G z
250 249 adantlr φ r + B r B + r I z D F z G z
251 250 fmpttd φ r + B r B + r I z D F z G z : D
252 difss I B I
253 6 252 eqsstri D I
254 24 69 sstrdi φ I
255 253 254 sstrid φ D
256 255 adantr φ r + B r B + r I D
257 eqid TopOpen fld 𝑡 D B = TopOpen fld 𝑡 D B
258 6 uneq1i D B = I B B
259 undif1 I B B = I B
260 258 259 eqtri D B = I B
261 simprr φ r + B r B + r I B r B + r I
262 52 261 sstrd φ r + B r B + r I B I
263 ssequn2 B I I B = I
264 262 263 sylib φ r + B r B + r I I B = I
265 260 264 eqtrid φ r + B r B + r I D B = I
266 265 oveq2d φ r + B r B + r I TopOpen fld 𝑡 D B = TopOpen fld 𝑡 I
267 24 adantr φ r + B r B + r I I
268 eqid topGen ran . = topGen ran .
269 86 268 rerest I TopOpen fld 𝑡 I = topGen ran . 𝑡 I
270 267 269 syl φ r + B r B + r I TopOpen fld 𝑡 I = topGen ran . 𝑡 I
271 266 270 eqtrd φ r + B r B + r I TopOpen fld 𝑡 D B = topGen ran . 𝑡 I
272 271 fveq2d φ r + B r B + r I int TopOpen fld 𝑡 D B = int topGen ran . 𝑡 I
273 272 fveq1d φ r + B r B + r I int TopOpen fld 𝑡 D B B r B + r = int topGen ran . 𝑡 I B r B + r
274 86 cnfldtopon TopOpen fld TopOn
275 254 adantr φ r + B r B + r I I
276 resttopon TopOpen fld TopOn I TopOpen fld 𝑡 I TopOn I
277 274 275 276 sylancr φ r + B r B + r I TopOpen fld 𝑡 I TopOn I
278 topontop TopOpen fld 𝑡 I TopOn I TopOpen fld 𝑡 I Top
279 277 278 syl φ r + B r B + r I TopOpen fld 𝑡 I Top
280 270 279 eqeltrrd φ r + B r B + r I topGen ran . 𝑡 I Top
281 iooretop B r B + r topGen ran .
282 281 a1i φ r + B r B + r I B r B + r topGen ran .
283 4 adantr φ r + B r B + r I I topGen ran .
284 restopn2 topGen ran . Top I topGen ran . B r B + r topGen ran . 𝑡 I B r B + r topGen ran . B r B + r I
285 90 283 284 sylancr φ r + B r B + r I B r B + r topGen ran . 𝑡 I B r B + r topGen ran . B r B + r I
286 282 261 285 mpbir2and φ r + B r B + r I B r B + r topGen ran . 𝑡 I
287 isopn3i topGen ran . 𝑡 I Top B r B + r topGen ran . 𝑡 I int topGen ran . 𝑡 I B r B + r = B r B + r
288 280 286 287 syl2anc φ r + B r B + r I int topGen ran . 𝑡 I B r B + r = B r B + r
289 273 288 eqtrd φ r + B r B + r I int TopOpen fld 𝑡 D B B r B + r = B r B + r
290 51 289 eleqtrrd φ r + B r B + r I B int TopOpen fld 𝑡 D B B r B + r
291 undif1 B r B + r B B = B r B + r B
292 ssequn2 B B r B + r B r B + r B = B r B + r
293 52 292 sylib φ r + B r B + r I B r B + r B = B r B + r
294 291 293 eqtrid φ r + B r B + r I B r B + r B B = B r B + r
295 294 fveq2d φ r + B r B + r I int TopOpen fld 𝑡 D B B r B + r B B = int TopOpen fld 𝑡 D B B r B + r
296 290 295 eleqtrrd φ r + B r B + r I B int TopOpen fld 𝑡 D B B r B + r B B
297 251 68 256 86 257 296 limcres φ r + B r B + r I z D F z G z B r B + r B lim B = z D F z G z lim B
298 84 69 sstri B r B
299 298 a1i φ r + B r B + r I B r B
300 165 69 sstri B B + r
301 300 a1i φ r + B r B + r I B B + r
302 68 sselda φ r + B r B + r I z B r B + r B z D
303 302 250 syldan φ r + B r B + r I z B r B + r B F z G z
304 303 fmpttd φ r + B r B + r I z B r B + r B F z G z : B r B + r B
305 64 feq2d φ r + B r B + r I z B r B + r B F z G z : B r B + r B z B r B + r B F z G z : B r B B B + r
306 304 305 mpbid φ r + B r B + r I z B r B + r B F z G z : B r B B B + r
307 299 301 306 limcun φ r + B r B + r I z B r B + r B F z G z lim B = z B r B + r B F z G z B r B lim B z B r B + r B F z G z B B + r lim B
308 230 297 307 3eqtr3rd φ r + B r B + r I z B r B + r B F z G z B r B lim B z B r B + r B F z G z B B + r lim B = z D F z G z lim B
309 228 308 eleqtrd φ r + B r B + r I C z D F z G z lim B
310 309 expr φ r + B r B + r I C z D F z G z lim B
311 29 310 sylbid φ r + B ball abs 2 r I C z D F z G z lim B
312 311 rexlimdva φ r + B ball abs 2 r I C z D F z G z lim B
313 20 312 mpd φ C z D F z G z lim B