Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Stefan O'Rear
Endomorphism algebra
mendring
Next ⟩
mendlmod
Metamath Proof Explorer
Ascii
Unicode
Theorem
mendring
Description:
The module endomorphism algebra is a ring.
(Contributed by
Stefan O'Rear
, 5-Sep-2015)
Ref
Expression
Hypothesis
mendassa.a
⊢
A
=
MEndo
M
Assertion
mendring
⊢
M
∈
LMod
→
A
∈
Ring
Proof
Step
Hyp
Ref
Expression
1
mendassa.a
⊢
A
=
MEndo
M
2
1
mendbas
⊢
M
LMHom
M
=
Base
A
3
2
a1i
⊢
M
∈
LMod
→
M
LMHom
M
=
Base
A
4
eqidd
⊢
M
∈
LMod
→
+
A
=
+
A
5
eqidd
⊢
M
∈
LMod
→
⋅
A
=
⋅
A
6
eqid
⊢
+
M
=
+
M
7
eqid
⊢
+
A
=
+
A
8
1
2
6
7
mendplusg
⊢
x
∈
M
LMHom
M
∧
y
∈
M
LMHom
M
→
x
+
A
y
=
x
+
M
f
y
9
6
lmhmplusg
⊢
x
∈
M
LMHom
M
∧
y
∈
M
LMHom
M
→
x
+
M
f
y
∈
M
LMHom
M
10
8
9
eqeltrd
⊢
x
∈
M
LMHom
M
∧
y
∈
M
LMHom
M
→
x
+
A
y
∈
M
LMHom
M
11
10
3adant1
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
∧
y
∈
M
LMHom
M
→
x
+
A
y
∈
M
LMHom
M
12
simpr1
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
∧
y
∈
M
LMHom
M
∧
z
∈
M
LMHom
M
→
x
∈
M
LMHom
M
13
simpr2
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
∧
y
∈
M
LMHom
M
∧
z
∈
M
LMHom
M
→
y
∈
M
LMHom
M
14
12
13
9
syl2anc
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
∧
y
∈
M
LMHom
M
∧
z
∈
M
LMHom
M
→
x
+
M
f
y
∈
M
LMHom
M
15
simpr3
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
∧
y
∈
M
LMHom
M
∧
z
∈
M
LMHom
M
→
z
∈
M
LMHom
M
16
1
2
6
7
mendplusg
⊢
x
+
M
f
y
∈
M
LMHom
M
∧
z
∈
M
LMHom
M
→
x
+
M
f
y
+
A
z
=
x
+
M
f
y
+
M
f
z
17
14
15
16
syl2anc
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
∧
y
∈
M
LMHom
M
∧
z
∈
M
LMHom
M
→
x
+
M
f
y
+
A
z
=
x
+
M
f
y
+
M
f
z
18
12
13
8
syl2anc
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
∧
y
∈
M
LMHom
M
∧
z
∈
M
LMHom
M
→
x
+
A
y
=
x
+
M
f
y
19
18
oveq1d
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
∧
y
∈
M
LMHom
M
∧
z
∈
M
LMHom
M
→
x
+
A
y
+
A
z
=
x
+
M
f
y
+
A
z
20
6
lmhmplusg
⊢
y
∈
M
LMHom
M
∧
z
∈
M
LMHom
M
→
y
+
M
f
z
∈
M
LMHom
M
21
13
15
20
syl2anc
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
∧
y
∈
M
LMHom
M
∧
z
∈
M
LMHom
M
→
y
+
M
f
z
∈
M
LMHom
M
22
1
2
6
7
mendplusg
⊢
x
∈
M
LMHom
M
∧
y
+
M
f
z
∈
M
LMHom
M
→
x
+
A
y
+
M
f
z
=
x
+
M
f
y
+
M
f
z
23
12
21
22
syl2anc
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
∧
y
∈
M
LMHom
M
∧
z
∈
M
LMHom
M
→
x
+
A
y
+
M
f
z
=
x
+
M
f
y
+
M
f
z
24
1
2
6
7
mendplusg
⊢
y
∈
M
LMHom
M
∧
z
∈
M
LMHom
M
→
y
+
A
z
=
y
+
M
f
z
25
13
15
24
syl2anc
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
∧
y
∈
M
LMHom
M
∧
z
∈
M
LMHom
M
→
y
+
A
z
=
y
+
M
f
z
26
25
oveq2d
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
∧
y
∈
M
LMHom
M
∧
z
∈
M
LMHom
M
→
x
+
A
y
+
A
z
=
x
+
A
y
+
M
f
z
27
lmodgrp
⊢
M
∈
LMod
→
M
∈
Grp
28
27
grpmndd
⊢
M
∈
LMod
→
M
∈
Mnd
29
28
adantr
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
∧
y
∈
M
LMHom
M
∧
z
∈
M
LMHom
M
→
M
∈
Mnd
30
eqid
⊢
Base
M
=
Base
M
31
30
30
lmhmf
⊢
x
∈
M
LMHom
M
→
x
:
Base
M
⟶
Base
M
32
12
31
syl
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
∧
y
∈
M
LMHom
M
∧
z
∈
M
LMHom
M
→
x
:
Base
M
⟶
Base
M
33
fvex
⊢
Base
M
∈
V
34
33
33
elmap
⊢
x
∈
Base
M
Base
M
↔
x
:
Base
M
⟶
Base
M
35
32
34
sylibr
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
∧
y
∈
M
LMHom
M
∧
z
∈
M
LMHom
M
→
x
∈
Base
M
Base
M
36
30
30
lmhmf
⊢
y
∈
M
LMHom
M
→
y
:
Base
M
⟶
Base
M
37
13
36
syl
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
∧
y
∈
M
LMHom
M
∧
z
∈
M
LMHom
M
→
y
:
Base
M
⟶
Base
M
38
33
33
elmap
⊢
y
∈
Base
M
Base
M
↔
y
:
Base
M
⟶
Base
M
39
37
38
sylibr
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
∧
y
∈
M
LMHom
M
∧
z
∈
M
LMHom
M
→
y
∈
Base
M
Base
M
40
30
30
lmhmf
⊢
z
∈
M
LMHom
M
→
z
:
Base
M
⟶
Base
M
41
15
40
syl
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
∧
y
∈
M
LMHom
M
∧
z
∈
M
LMHom
M
→
z
:
Base
M
⟶
Base
M
42
33
33
elmap
⊢
z
∈
Base
M
Base
M
↔
z
:
Base
M
⟶
Base
M
43
41
42
sylibr
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
∧
y
∈
M
LMHom
M
∧
z
∈
M
LMHom
M
→
z
∈
Base
M
Base
M
44
30
6
mndvass
⊢
M
∈
Mnd
∧
x
∈
Base
M
Base
M
∧
y
∈
Base
M
Base
M
∧
z
∈
Base
M
Base
M
→
x
+
M
f
y
+
M
f
z
=
x
+
M
f
y
+
M
f
z
45
29
35
39
43
44
syl13anc
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
∧
y
∈
M
LMHom
M
∧
z
∈
M
LMHom
M
→
x
+
M
f
y
+
M
f
z
=
x
+
M
f
y
+
M
f
z
46
23
26
45
3eqtr4d
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
∧
y
∈
M
LMHom
M
∧
z
∈
M
LMHom
M
→
x
+
A
y
+
A
z
=
x
+
M
f
y
+
M
f
z
47
17
19
46
3eqtr4d
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
∧
y
∈
M
LMHom
M
∧
z
∈
M
LMHom
M
→
x
+
A
y
+
A
z
=
x
+
A
y
+
A
z
48
id
⊢
M
∈
LMod
→
M
∈
LMod
49
eqidd
⊢
M
∈
LMod
→
Scalar
M
=
Scalar
M
50
eqid
⊢
0
M
=
0
M
51
eqid
⊢
Scalar
M
=
Scalar
M
52
50
30
51
51
0lmhm
⊢
M
∈
LMod
∧
M
∈
LMod
∧
Scalar
M
=
Scalar
M
→
Base
M
×
0
M
∈
M
LMHom
M
53
48
48
49
52
syl3anc
⊢
M
∈
LMod
→
Base
M
×
0
M
∈
M
LMHom
M
54
1
2
6
7
mendplusg
⊢
Base
M
×
0
M
∈
M
LMHom
M
∧
x
∈
M
LMHom
M
→
Base
M
×
0
M
+
A
x
=
Base
M
×
0
M
+
M
f
x
55
53
54
sylan
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
→
Base
M
×
0
M
+
A
x
=
Base
M
×
0
M
+
M
f
x
56
31
34
sylibr
⊢
x
∈
M
LMHom
M
→
x
∈
Base
M
Base
M
57
30
6
50
mndvlid
⊢
M
∈
Mnd
∧
x
∈
Base
M
Base
M
→
Base
M
×
0
M
+
M
f
x
=
x
58
28
56
57
syl2an
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
→
Base
M
×
0
M
+
M
f
x
=
x
59
55
58
eqtrd
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
→
Base
M
×
0
M
+
A
x
=
x
60
eqid
⊢
inv
g
M
=
inv
g
M
61
60
invlmhm
⊢
M
∈
LMod
→
inv
g
M
∈
M
LMHom
M
62
lmhmco
⊢
inv
g
M
∈
M
LMHom
M
∧
x
∈
M
LMHom
M
→
inv
g
M
∘
x
∈
M
LMHom
M
63
61
62
sylan
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
→
inv
g
M
∘
x
∈
M
LMHom
M
64
1
2
6
7
mendplusg
⊢
inv
g
M
∘
x
∈
M
LMHom
M
∧
x
∈
M
LMHom
M
→
inv
g
M
∘
x
+
A
x
=
inv
g
M
∘
x
+
M
f
x
65
63
64
sylancom
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
→
inv
g
M
∘
x
+
A
x
=
inv
g
M
∘
x
+
M
f
x
66
30
6
60
50
grpvlinv
⊢
M
∈
Grp
∧
x
∈
Base
M
Base
M
→
inv
g
M
∘
x
+
M
f
x
=
Base
M
×
0
M
67
27
56
66
syl2an
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
→
inv
g
M
∘
x
+
M
f
x
=
Base
M
×
0
M
68
65
67
eqtrd
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
→
inv
g
M
∘
x
+
A
x
=
Base
M
×
0
M
69
3
4
11
47
53
59
63
68
isgrpd
⊢
M
∈
LMod
→
A
∈
Grp
70
eqid
⊢
⋅
A
=
⋅
A
71
1
2
70
mendmulr
⊢
x
∈
M
LMHom
M
∧
y
∈
M
LMHom
M
→
x
⋅
A
y
=
x
∘
y
72
lmhmco
⊢
x
∈
M
LMHom
M
∧
y
∈
M
LMHom
M
→
x
∘
y
∈
M
LMHom
M
73
71
72
eqeltrd
⊢
x
∈
M
LMHom
M
∧
y
∈
M
LMHom
M
→
x
⋅
A
y
∈
M
LMHom
M
74
73
3adant1
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
∧
y
∈
M
LMHom
M
→
x
⋅
A
y
∈
M
LMHom
M
75
coass
⊢
x
∘
y
∘
z
=
x
∘
y
∘
z
76
12
13
71
syl2anc
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
∧
y
∈
M
LMHom
M
∧
z
∈
M
LMHom
M
→
x
⋅
A
y
=
x
∘
y
77
76
oveq1d
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
∧
y
∈
M
LMHom
M
∧
z
∈
M
LMHom
M
→
x
⋅
A
y
⋅
A
z
=
x
∘
y
⋅
A
z
78
12
13
72
syl2anc
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
∧
y
∈
M
LMHom
M
∧
z
∈
M
LMHom
M
→
x
∘
y
∈
M
LMHom
M
79
1
2
70
mendmulr
⊢
x
∘
y
∈
M
LMHom
M
∧
z
∈
M
LMHom
M
→
x
∘
y
⋅
A
z
=
x
∘
y
∘
z
80
78
15
79
syl2anc
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
∧
y
∈
M
LMHom
M
∧
z
∈
M
LMHom
M
→
x
∘
y
⋅
A
z
=
x
∘
y
∘
z
81
77
80
eqtrd
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
∧
y
∈
M
LMHom
M
∧
z
∈
M
LMHom
M
→
x
⋅
A
y
⋅
A
z
=
x
∘
y
∘
z
82
1
2
70
mendmulr
⊢
y
∈
M
LMHom
M
∧
z
∈
M
LMHom
M
→
y
⋅
A
z
=
y
∘
z
83
13
15
82
syl2anc
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
∧
y
∈
M
LMHom
M
∧
z
∈
M
LMHom
M
→
y
⋅
A
z
=
y
∘
z
84
83
oveq2d
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
∧
y
∈
M
LMHom
M
∧
z
∈
M
LMHom
M
→
x
⋅
A
y
⋅
A
z
=
x
⋅
A
y
∘
z
85
lmhmco
⊢
y
∈
M
LMHom
M
∧
z
∈
M
LMHom
M
→
y
∘
z
∈
M
LMHom
M
86
13
15
85
syl2anc
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
∧
y
∈
M
LMHom
M
∧
z
∈
M
LMHom
M
→
y
∘
z
∈
M
LMHom
M
87
1
2
70
mendmulr
⊢
x
∈
M
LMHom
M
∧
y
∘
z
∈
M
LMHom
M
→
x
⋅
A
y
∘
z
=
x
∘
y
∘
z
88
12
86
87
syl2anc
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
∧
y
∈
M
LMHom
M
∧
z
∈
M
LMHom
M
→
x
⋅
A
y
∘
z
=
x
∘
y
∘
z
89
84
88
eqtrd
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
∧
y
∈
M
LMHom
M
∧
z
∈
M
LMHom
M
→
x
⋅
A
y
⋅
A
z
=
x
∘
y
∘
z
90
75
81
89
3eqtr4a
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
∧
y
∈
M
LMHom
M
∧
z
∈
M
LMHom
M
→
x
⋅
A
y
⋅
A
z
=
x
⋅
A
y
⋅
A
z
91
1
2
70
mendmulr
⊢
x
∈
M
LMHom
M
∧
y
+
M
f
z
∈
M
LMHom
M
→
x
⋅
A
y
+
M
f
z
=
x
∘
y
+
M
f
z
92
12
21
91
syl2anc
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
∧
y
∈
M
LMHom
M
∧
z
∈
M
LMHom
M
→
x
⋅
A
y
+
M
f
z
=
x
∘
y
+
M
f
z
93
25
oveq2d
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
∧
y
∈
M
LMHom
M
∧
z
∈
M
LMHom
M
→
x
⋅
A
y
+
A
z
=
x
⋅
A
y
+
M
f
z
94
lmhmco
⊢
x
∈
M
LMHom
M
∧
z
∈
M
LMHom
M
→
x
∘
z
∈
M
LMHom
M
95
12
15
94
syl2anc
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
∧
y
∈
M
LMHom
M
∧
z
∈
M
LMHom
M
→
x
∘
z
∈
M
LMHom
M
96
1
2
6
7
mendplusg
⊢
x
∘
y
∈
M
LMHom
M
∧
x
∘
z
∈
M
LMHom
M
→
x
∘
y
+
A
x
∘
z
=
x
∘
y
+
M
f
x
∘
z
97
78
95
96
syl2anc
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
∧
y
∈
M
LMHom
M
∧
z
∈
M
LMHom
M
→
x
∘
y
+
A
x
∘
z
=
x
∘
y
+
M
f
x
∘
z
98
1
2
70
mendmulr
⊢
x
∈
M
LMHom
M
∧
z
∈
M
LMHom
M
→
x
⋅
A
z
=
x
∘
z
99
12
15
98
syl2anc
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
∧
y
∈
M
LMHom
M
∧
z
∈
M
LMHom
M
→
x
⋅
A
z
=
x
∘
z
100
76
99
oveq12d
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
∧
y
∈
M
LMHom
M
∧
z
∈
M
LMHom
M
→
x
⋅
A
y
+
A
x
⋅
A
z
=
x
∘
y
+
A
x
∘
z
101
lmghm
⊢
x
∈
M
LMHom
M
→
x
∈
M
GrpHom
M
102
ghmmhm
⊢
x
∈
M
GrpHom
M
→
x
∈
M
MndHom
M
103
12
101
102
3syl
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
∧
y
∈
M
LMHom
M
∧
z
∈
M
LMHom
M
→
x
∈
M
MndHom
M
104
30
6
6
mhmvlin
⊢
x
∈
M
MndHom
M
∧
y
∈
Base
M
Base
M
∧
z
∈
Base
M
Base
M
→
x
∘
y
+
M
f
z
=
x
∘
y
+
M
f
x
∘
z
105
103
39
43
104
syl3anc
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
∧
y
∈
M
LMHom
M
∧
z
∈
M
LMHom
M
→
x
∘
y
+
M
f
z
=
x
∘
y
+
M
f
x
∘
z
106
97
100
105
3eqtr4d
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
∧
y
∈
M
LMHom
M
∧
z
∈
M
LMHom
M
→
x
⋅
A
y
+
A
x
⋅
A
z
=
x
∘
y
+
M
f
z
107
92
93
106
3eqtr4d
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
∧
y
∈
M
LMHom
M
∧
z
∈
M
LMHom
M
→
x
⋅
A
y
+
A
z
=
x
⋅
A
y
+
A
x
⋅
A
z
108
1
2
70
mendmulr
⊢
x
+
M
f
y
∈
M
LMHom
M
∧
z
∈
M
LMHom
M
→
x
+
M
f
y
⋅
A
z
=
x
+
M
f
y
∘
z
109
14
15
108
syl2anc
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
∧
y
∈
M
LMHom
M
∧
z
∈
M
LMHom
M
→
x
+
M
f
y
⋅
A
z
=
x
+
M
f
y
∘
z
110
18
oveq1d
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
∧
y
∈
M
LMHom
M
∧
z
∈
M
LMHom
M
→
x
+
A
y
⋅
A
z
=
x
+
M
f
y
⋅
A
z
111
1
2
6
7
mendplusg
⊢
x
∘
z
∈
M
LMHom
M
∧
y
∘
z
∈
M
LMHom
M
→
x
∘
z
+
A
y
∘
z
=
x
∘
z
+
M
f
y
∘
z
112
95
86
111
syl2anc
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
∧
y
∈
M
LMHom
M
∧
z
∈
M
LMHom
M
→
x
∘
z
+
A
y
∘
z
=
x
∘
z
+
M
f
y
∘
z
113
99
83
oveq12d
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
∧
y
∈
M
LMHom
M
∧
z
∈
M
LMHom
M
→
x
⋅
A
z
+
A
y
⋅
A
z
=
x
∘
z
+
A
y
∘
z
114
ffn
⊢
x
:
Base
M
⟶
Base
M
→
x
Fn
Base
M
115
12
31
114
3syl
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
∧
y
∈
M
LMHom
M
∧
z
∈
M
LMHom
M
→
x
Fn
Base
M
116
ffn
⊢
y
:
Base
M
⟶
Base
M
→
y
Fn
Base
M
117
13
36
116
3syl
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
∧
y
∈
M
LMHom
M
∧
z
∈
M
LMHom
M
→
y
Fn
Base
M
118
33
a1i
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
∧
y
∈
M
LMHom
M
∧
z
∈
M
LMHom
M
→
Base
M
∈
V
119
inidm
⊢
Base
M
∩
Base
M
=
Base
M
120
115
117
41
118
118
118
119
ofco
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
∧
y
∈
M
LMHom
M
∧
z
∈
M
LMHom
M
→
x
+
M
f
y
∘
z
=
x
∘
z
+
M
f
y
∘
z
121
112
113
120
3eqtr4d
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
∧
y
∈
M
LMHom
M
∧
z
∈
M
LMHom
M
→
x
⋅
A
z
+
A
y
⋅
A
z
=
x
+
M
f
y
∘
z
122
109
110
121
3eqtr4d
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
∧
y
∈
M
LMHom
M
∧
z
∈
M
LMHom
M
→
x
+
A
y
⋅
A
z
=
x
⋅
A
z
+
A
y
⋅
A
z
123
30
idlmhm
⊢
M
∈
LMod
→
I
↾
Base
M
∈
M
LMHom
M
124
1
2
70
mendmulr
⊢
I
↾
Base
M
∈
M
LMHom
M
∧
x
∈
M
LMHom
M
→
I
↾
Base
M
⋅
A
x
=
I
↾
Base
M
∘
x
125
123
124
sylan
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
→
I
↾
Base
M
⋅
A
x
=
I
↾
Base
M
∘
x
126
31
adantl
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
→
x
:
Base
M
⟶
Base
M
127
fcoi2
⊢
x
:
Base
M
⟶
Base
M
→
I
↾
Base
M
∘
x
=
x
128
126
127
syl
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
→
I
↾
Base
M
∘
x
=
x
129
125
128
eqtrd
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
→
I
↾
Base
M
⋅
A
x
=
x
130
id
⊢
x
∈
M
LMHom
M
→
x
∈
M
LMHom
M
131
1
2
70
mendmulr
⊢
x
∈
M
LMHom
M
∧
I
↾
Base
M
∈
M
LMHom
M
→
x
⋅
A
I
↾
Base
M
=
x
∘
I
↾
Base
M
132
130
123
131
syl2anr
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
→
x
⋅
A
I
↾
Base
M
=
x
∘
I
↾
Base
M
133
fcoi1
⊢
x
:
Base
M
⟶
Base
M
→
x
∘
I
↾
Base
M
=
x
134
126
133
syl
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
→
x
∘
I
↾
Base
M
=
x
135
132
134
eqtrd
⊢
M
∈
LMod
∧
x
∈
M
LMHom
M
→
x
⋅
A
I
↾
Base
M
=
x
136
3
4
5
69
74
90
107
122
123
129
135
isringd
⊢
M
∈
LMod
→
A
∈
Ring