| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mertens.1 |
|
| 2 |
|
mertens.2 |
|
| 3 |
|
mertens.3 |
|
| 4 |
|
mertens.4 |
|
| 5 |
|
mertens.5 |
|
| 6 |
|
mertens.6 |
|
| 7 |
|
mertens.7 |
|
| 8 |
|
mertens.8 |
|
| 9 |
|
nn0uz |
|
| 10 |
|
0zd |
|
| 11 |
|
seqex |
|
| 12 |
11
|
a1i |
|
| 13 |
|
fzfid |
|
| 14 |
|
simpl |
|
| 15 |
|
elfznn0 |
|
| 16 |
14 15 3
|
syl2an |
|
| 17 |
|
fveq2 |
|
| 18 |
17
|
eleq1d |
|
| 19 |
4 5
|
eqeltrd |
|
| 20 |
19
|
ralrimiva |
|
| 21 |
|
fveq2 |
|
| 22 |
21
|
eleq1d |
|
| 23 |
22
|
cbvralvw |
|
| 24 |
20 23
|
sylib |
|
| 25 |
24
|
ad2antrr |
|
| 26 |
|
fznn0sub |
|
| 27 |
26
|
adantl |
|
| 28 |
18 25 27
|
rspcdva |
|
| 29 |
16 28
|
mulcld |
|
| 30 |
13 29
|
fsumcl |
|
| 31 |
6 30
|
eqeltrd |
|
| 32 |
9 10 31
|
serf |
|
| 33 |
32
|
ffvelcdmda |
|
| 34 |
1
|
adantlr |
|
| 35 |
2
|
adantlr |
|
| 36 |
3
|
adantlr |
|
| 37 |
4
|
adantlr |
|
| 38 |
5
|
adantlr |
|
| 39 |
6
|
adantlr |
|
| 40 |
7
|
adantr |
|
| 41 |
8
|
adantr |
|
| 42 |
|
simpr |
|
| 43 |
|
fveq2 |
|
| 44 |
43
|
cbvsumv |
|
| 45 |
|
fvoveq1 |
|
| 46 |
45
|
sumeq1d |
|
| 47 |
44 46
|
eqtrid |
|
| 48 |
47
|
fveq2d |
|
| 49 |
48
|
eqeq2d |
|
| 50 |
49
|
cbvrexvw |
|
| 51 |
|
eqeq1 |
|
| 52 |
51
|
rexbidv |
|
| 53 |
50 52
|
bitrid |
|
| 54 |
53
|
cbvabv |
|
| 55 |
|
fveq2 |
|
| 56 |
55
|
cbvsumv |
|
| 57 |
56
|
oveq1i |
|
| 58 |
57
|
oveq2i |
|
| 59 |
58
|
breq2i |
|
| 60 |
|
fveq2 |
|
| 61 |
60
|
cbvsumv |
|
| 62 |
|
fvoveq1 |
|
| 63 |
62
|
sumeq1d |
|
| 64 |
61 63
|
eqtrid |
|
| 65 |
64
|
fveq2d |
|
| 66 |
65
|
breq1d |
|
| 67 |
59 66
|
bitrid |
|
| 68 |
67
|
cbvralvw |
|
| 69 |
68
|
anbi2i |
|
| 70 |
34 35 36 37 38 39 40 41 42 54 69
|
mertenslem2 |
|
| 71 |
|
eluznn0 |
|
| 72 |
|
fzfid |
|
| 73 |
|
simpll |
|
| 74 |
|
elfznn0 |
|
| 75 |
74
|
adantl |
|
| 76 |
9 10 4 5 8
|
isumcl |
|
| 77 |
76
|
adantr |
|
| 78 |
1 3
|
eqeltrd |
|
| 79 |
77 78
|
mulcld |
|
| 80 |
73 75 79
|
syl2anc |
|
| 81 |
|
fzfid |
|
| 82 |
|
simplll |
|
| 83 |
74
|
ad2antlr |
|
| 84 |
82 83 3
|
syl2anc |
|
| 85 |
|
elfznn0 |
|
| 86 |
85
|
adantl |
|
| 87 |
82 86 19
|
syl2anc |
|
| 88 |
84 87
|
mulcld |
|
| 89 |
81 88
|
fsumcl |
|
| 90 |
72 80 89
|
fsumsub |
|
| 91 |
73 75 3
|
syl2anc |
|
| 92 |
76
|
ad2antrr |
|
| 93 |
81 87
|
fsumcl |
|
| 94 |
91 92 93
|
subdid |
|
| 95 |
|
eqid |
|
| 96 |
|
fznn0sub |
|
| 97 |
96
|
adantl |
|
| 98 |
|
peano2nn0 |
|
| 99 |
97 98
|
syl |
|
| 100 |
99
|
nn0zd |
|
| 101 |
|
simplll |
|
| 102 |
|
eluznn0 |
|
| 103 |
99 102
|
sylan |
|
| 104 |
101 103 4
|
syl2anc |
|
| 105 |
101 103 5
|
syl2anc |
|
| 106 |
8
|
ad2antrr |
|
| 107 |
73 4
|
sylan |
|
| 108 |
73 5
|
sylan |
|
| 109 |
107 108
|
eqeltrd |
|
| 110 |
9 99 109
|
iserex |
|
| 111 |
106 110
|
mpbid |
|
| 112 |
95 100 104 105 111
|
isumcl |
|
| 113 |
9 95 99 107 108 106
|
isumsplit |
|
| 114 |
97
|
nn0cnd |
|
| 115 |
|
ax-1cn |
|
| 116 |
|
pncan |
|
| 117 |
114 115 116
|
sylancl |
|
| 118 |
117
|
oveq2d |
|
| 119 |
118
|
sumeq1d |
|
| 120 |
82 86 4
|
syl2anc |
|
| 121 |
120
|
sumeq2dv |
|
| 122 |
119 121
|
eqtr4d |
|
| 123 |
122
|
oveq1d |
|
| 124 |
113 123
|
eqtrd |
|
| 125 |
93 112 124
|
mvrladdd |
|
| 126 |
125
|
oveq2d |
|
| 127 |
3 77
|
mulcomd |
|
| 128 |
1
|
oveq2d |
|
| 129 |
127 128
|
eqtr4d |
|
| 130 |
73 75 129
|
syl2anc |
|
| 131 |
81 91 87
|
fsummulc2 |
|
| 132 |
130 131
|
oveq12d |
|
| 133 |
94 126 132
|
3eqtr3rd |
|
| 134 |
133
|
sumeq2dv |
|
| 135 |
|
fveq2 |
|
| 136 |
135
|
oveq2d |
|
| 137 |
|
eqid |
|
| 138 |
|
ovex |
|
| 139 |
136 137 138
|
fvmpt |
|
| 140 |
75 139
|
syl |
|
| 141 |
|
simpr |
|
| 142 |
141 9
|
eleqtrdi |
|
| 143 |
140 142 80
|
fsumser |
|
| 144 |
|
fveq2 |
|
| 145 |
144
|
oveq2d |
|
| 146 |
|
fveq2 |
|
| 147 |
146
|
oveq2d |
|
| 148 |
88
|
anasss |
|
| 149 |
145 147 148
|
fsum0diag2 |
|
| 150 |
|
simpll |
|
| 151 |
|
elfznn0 |
|
| 152 |
151
|
adantl |
|
| 153 |
150 152 6
|
syl2anc |
|
| 154 |
150 152 30
|
syl2anc |
|
| 155 |
153 142 154
|
fsumser |
|
| 156 |
149 155
|
eqtrd |
|
| 157 |
143 156
|
oveq12d |
|
| 158 |
90 134 157
|
3eqtr3rd |
|
| 159 |
158
|
fveq2d |
|
| 160 |
159
|
breq1d |
|
| 161 |
71 160
|
sylan2 |
|
| 162 |
161
|
anassrs |
|
| 163 |
162
|
ralbidva |
|
| 164 |
163
|
rexbidva |
|
| 165 |
164
|
adantr |
|
| 166 |
70 165
|
mpbird |
|
| 167 |
166
|
ralrimiva |
|
| 168 |
1
|
fveq2d |
|
| 169 |
2 168
|
eqtr4d |
|
| 170 |
9 10 169 78 7
|
abscvgcvg |
|
| 171 |
9 10 1 3 170
|
isumclim2 |
|
| 172 |
78
|
ralrimiva |
|
| 173 |
|
fveq2 |
|
| 174 |
173
|
eleq1d |
|
| 175 |
174
|
rspccva |
|
| 176 |
172 175
|
sylan |
|
| 177 |
|
fveq2 |
|
| 178 |
177
|
oveq2d |
|
| 179 |
|
ovex |
|
| 180 |
178 137 179
|
fvmpt |
|
| 181 |
180
|
adantl |
|
| 182 |
9 10 76 171 176 181
|
isermulc2 |
|
| 183 |
9 10 1 3 170
|
isumcl |
|
| 184 |
76 183
|
mulcomd |
|
| 185 |
182 184
|
breqtrd |
|
| 186 |
9 10 12 33 167 185
|
2clim |
|