Metamath Proof Explorer


Theorem mertens

Description: Mertens' theorem. If A ( j ) is an absolutely convergent series and B ( k ) is convergent, then ( sum_ j e. NN0 A ( j ) x. sum_ k e. NN0 B ( k ) ) = sum_ k e. NN0 sum_ j e. ( 0 ... k ) ( A ( j ) x. B ( k - j ) ) (and this latter series is convergent). This latter sum is commonly known as the Cauchy product of the sequences. The proof follows the outline at http://en.wikipedia.org/wiki/Cauchy_product#Proof_of_Mertens.27_theorem . (Contributed by Mario Carneiro, 29-Apr-2014)

Ref Expression
Hypotheses mertens.1 φj0Fj=A
mertens.2 φj0Kj=A
mertens.3 φj0A
mertens.4 φk0Gk=B
mertens.5 φk0B
mertens.6 φk0Hk=j=0kAGkj
mertens.7 φseq0+Kdom
mertens.8 φseq0+Gdom
Assertion mertens φseq0+Hj0Ak0B

Proof

Step Hyp Ref Expression
1 mertens.1 φj0Fj=A
2 mertens.2 φj0Kj=A
3 mertens.3 φj0A
4 mertens.4 φk0Gk=B
5 mertens.5 φk0B
6 mertens.6 φk0Hk=j=0kAGkj
7 mertens.7 φseq0+Kdom
8 mertens.8 φseq0+Gdom
9 nn0uz 0=0
10 0zd φ0
11 seqex seq0+HV
12 11 a1i φseq0+HV
13 fzfid φk00kFin
14 simpl φk0φ
15 elfznn0 j0kj0
16 14 15 3 syl2an φk0j0kA
17 fveq2 i=kjGi=Gkj
18 17 eleq1d i=kjGiGkj
19 4 5 eqeltrd φk0Gk
20 19 ralrimiva φk0Gk
21 fveq2 k=iGk=Gi
22 21 eleq1d k=iGkGi
23 22 cbvralvw k0Gki0Gi
24 20 23 sylib φi0Gi
25 24 ad2antrr φk0j0ki0Gi
26 fznn0sub j0kkj0
27 26 adantl φk0j0kkj0
28 18 25 27 rspcdva φk0j0kGkj
29 16 28 mulcld φk0j0kAGkj
30 13 29 fsumcl φk0j=0kAGkj
31 6 30 eqeltrd φk0Hk
32 9 10 31 serf φseq0+H:0
33 32 ffvelcdmda φm0seq0+Hm
34 1 adantlr φx+j0Fj=A
35 2 adantlr φx+j0Kj=A
36 3 adantlr φx+j0A
37 4 adantlr φx+k0Gk=B
38 5 adantlr φx+k0B
39 6 adantlr φx+k0Hk=j=0kAGkj
40 7 adantr φx+seq0+Kdom
41 8 adantr φx+seq0+Gdom
42 simpr φx+x+
43 fveq2 l=kGl=Gk
44 43 cbvsumv li+1Gl=ki+1Gk
45 fvoveq1 i=ni+1=n+1
46 45 sumeq1d i=nki+1Gk=kn+1Gk
47 44 46 eqtrid i=nli+1Gl=kn+1Gk
48 47 fveq2d i=nli+1Gl=kn+1Gk
49 48 eqeq2d i=nu=li+1Glu=kn+1Gk
50 49 cbvrexvw i0s1u=li+1Gln0s1u=kn+1Gk
51 eqeq1 u=zu=kn+1Gkz=kn+1Gk
52 51 rexbidv u=zn0s1u=kn+1Gkn0s1z=kn+1Gk
53 50 52 bitrid u=zi0s1u=li+1Gln0s1z=kn+1Gk
54 53 cbvabv u|i0s1u=li+1Gl=z|n0s1z=kn+1Gk
55 fveq2 i=jKi=Kj
56 55 cbvsumv i0Ki=j0Kj
57 56 oveq1i i0Ki+1=j0Kj+1
58 57 oveq2i x2i0Ki+1=x2j0Kj+1
59 58 breq2i iu+1Gi<x2i0Ki+1iu+1Gi<x2j0Kj+1
60 fveq2 i=kGi=Gk
61 60 cbvsumv iu+1Gi=ku+1Gk
62 fvoveq1 u=nu+1=n+1
63 62 sumeq1d u=nku+1Gk=kn+1Gk
64 61 63 eqtrid u=niu+1Gi=kn+1Gk
65 64 fveq2d u=niu+1Gi=kn+1Gk
66 65 breq1d u=niu+1Gi<x2j0Kj+1kn+1Gk<x2j0Kj+1
67 59 66 bitrid u=niu+1Gi<x2i0Ki+1kn+1Gk<x2j0Kj+1
68 67 cbvralvw usiu+1Gi<x2i0Ki+1nskn+1Gk<x2j0Kj+1
69 68 anbi2i susiu+1Gi<x2i0Ki+1snskn+1Gk<x2j0Kj+1
70 34 35 36 37 38 39 40 41 42 54 69 mertenslem2 φx+y0myj=0mAkm-j+1B<x
71 eluznn0 y0mym0
72 fzfid φm00mFin
73 simpll φm0j0mφ
74 elfznn0 j0mj0
75 74 adantl φm0j0mj0
76 9 10 4 5 8 isumcl φk0B
77 76 adantr φj0k0B
78 1 3 eqeltrd φj0Fj
79 77 78 mulcld φj0k0BFj
80 73 75 79 syl2anc φm0j0mk0BFj
81 fzfid φm0j0m0mjFin
82 simplll φm0j0mk0mjφ
83 74 ad2antlr φm0j0mk0mjj0
84 82 83 3 syl2anc φm0j0mk0mjA
85 elfznn0 k0mjk0
86 85 adantl φm0j0mk0mjk0
87 82 86 19 syl2anc φm0j0mk0mjGk
88 84 87 mulcld φm0j0mk0mjAGk
89 81 88 fsumcl φm0j0mk=0mjAGk
90 72 80 89 fsumsub φm0j=0mk0BFjk=0mjAGk=j=0mk0BFjj=0mk=0mjAGk
91 73 75 3 syl2anc φm0j0mA
92 76 ad2antrr φm0j0mk0B
93 81 87 fsumcl φm0j0mk=0mjGk
94 91 92 93 subdid φm0j0mAk0Bk=0mjGk=Ak0BAk=0mjGk
95 eqid m-j+1=m-j+1
96 fznn0sub j0mmj0
97 96 adantl φm0j0mmj0
98 peano2nn0 mj0m-j+10
99 97 98 syl φm0j0mm-j+10
100 99 nn0zd φm0j0mm-j+1
101 simplll φm0j0mkm-j+1φ
102 eluznn0 m-j+10km-j+1k0
103 99 102 sylan φm0j0mkm-j+1k0
104 101 103 4 syl2anc φm0j0mkm-j+1Gk=B
105 101 103 5 syl2anc φm0j0mkm-j+1B
106 8 ad2antrr φm0j0mseq0+Gdom
107 73 4 sylan φm0j0mk0Gk=B
108 73 5 sylan φm0j0mk0B
109 107 108 eqeltrd φm0j0mk0Gk
110 9 99 109 iserex φm0j0mseq0+Gdomseqm-j+1+Gdom
111 106 110 mpbid φm0j0mseqm-j+1+Gdom
112 95 100 104 105 111 isumcl φm0j0mkm-j+1B
113 9 95 99 107 108 106 isumsplit φm0j0mk0B=k=0mj+1-1B+km-j+1B
114 97 nn0cnd φm0j0mmj
115 ax-1cn 1
116 pncan mj1mj+1-1=mj
117 114 115 116 sylancl φm0j0mmj+1-1=mj
118 117 oveq2d φm0j0m0mj+1-1=0mj
119 118 sumeq1d φm0j0mk=0mj+1-1B=k=0mjB
120 82 86 4 syl2anc φm0j0mk0mjGk=B
121 120 sumeq2dv φm0j0mk=0mjGk=k=0mjB
122 119 121 eqtr4d φm0j0mk=0mj+1-1B=k=0mjGk
123 122 oveq1d φm0j0mk=0mj+1-1B+km-j+1B=k=0mjGk+km-j+1B
124 113 123 eqtrd φm0j0mk0B=k=0mjGk+km-j+1B
125 93 112 124 mvrladdd φm0j0mk0Bk=0mjGk=km-j+1B
126 125 oveq2d φm0j0mAk0Bk=0mjGk=Akm-j+1B
127 3 77 mulcomd φj0Ak0B=k0BA
128 1 oveq2d φj0k0BFj=k0BA
129 127 128 eqtr4d φj0Ak0B=k0BFj
130 73 75 129 syl2anc φm0j0mAk0B=k0BFj
131 81 91 87 fsummulc2 φm0j0mAk=0mjGk=k=0mjAGk
132 130 131 oveq12d φm0j0mAk0BAk=0mjGk=k0BFjk=0mjAGk
133 94 126 132 3eqtr3rd φm0j0mk0BFjk=0mjAGk=Akm-j+1B
134 133 sumeq2dv φm0j=0mk0BFjk=0mjAGk=j=0mAkm-j+1B
135 fveq2 n=jFn=Fj
136 135 oveq2d n=jk0BFn=k0BFj
137 eqid n0k0BFn=n0k0BFn
138 ovex k0BFjV
139 136 137 138 fvmpt j0n0k0BFnj=k0BFj
140 75 139 syl φm0j0mn0k0BFnj=k0BFj
141 simpr φm0m0
142 141 9 eleqtrdi φm0m0
143 140 142 80 fsumser φm0j=0mk0BFj=seq0+n0k0BFnm
144 fveq2 n=kGn=Gk
145 144 oveq2d n=kAGn=AGk
146 fveq2 n=kjGn=Gkj
147 146 oveq2d n=kjAGn=AGkj
148 88 anasss φm0j0mk0mjAGk
149 145 147 148 fsum0diag2 φm0j=0mk=0mjAGk=k=0mj=0kAGkj
150 simpll φm0k0mφ
151 elfznn0 k0mk0
152 151 adantl φm0k0mk0
153 150 152 6 syl2anc φm0k0mHk=j=0kAGkj
154 150 152 30 syl2anc φm0k0mj=0kAGkj
155 153 142 154 fsumser φm0k=0mj=0kAGkj=seq0+Hm
156 149 155 eqtrd φm0j=0mk=0mjAGk=seq0+Hm
157 143 156 oveq12d φm0j=0mk0BFjj=0mk=0mjAGk=seq0+n0k0BFnmseq0+Hm
158 90 134 157 3eqtr3rd φm0seq0+n0k0BFnmseq0+Hm=j=0mAkm-j+1B
159 158 fveq2d φm0seq0+n0k0BFnmseq0+Hm=j=0mAkm-j+1B
160 159 breq1d φm0seq0+n0k0BFnmseq0+Hm<xj=0mAkm-j+1B<x
161 71 160 sylan2 φy0myseq0+n0k0BFnmseq0+Hm<xj=0mAkm-j+1B<x
162 161 anassrs φy0myseq0+n0k0BFnmseq0+Hm<xj=0mAkm-j+1B<x
163 162 ralbidva φy0myseq0+n0k0BFnmseq0+Hm<xmyj=0mAkm-j+1B<x
164 163 rexbidva φy0myseq0+n0k0BFnmseq0+Hm<xy0myj=0mAkm-j+1B<x
165 164 adantr φx+y0myseq0+n0k0BFnmseq0+Hm<xy0myj=0mAkm-j+1B<x
166 70 165 mpbird φx+y0myseq0+n0k0BFnmseq0+Hm<x
167 166 ralrimiva φx+y0myseq0+n0k0BFnmseq0+Hm<x
168 1 fveq2d φj0Fj=A
169 2 168 eqtr4d φj0Kj=Fj
170 9 10 169 78 7 abscvgcvg φseq0+Fdom
171 9 10 1 3 170 isumclim2 φseq0+Fj0A
172 78 ralrimiva φj0Fj
173 fveq2 j=mFj=Fm
174 173 eleq1d j=mFjFm
175 174 rspccva j0Fjm0Fm
176 172 175 sylan φm0Fm
177 fveq2 n=mFn=Fm
178 177 oveq2d n=mk0BFn=k0BFm
179 ovex k0BFmV
180 178 137 179 fvmpt m0n0k0BFnm=k0BFm
181 180 adantl φm0n0k0BFnm=k0BFm
182 9 10 76 171 176 181 isermulc2 φseq0+n0k0BFnk0Bj0A
183 9 10 1 3 170 isumcl φj0A
184 76 183 mulcomd φk0Bj0A=j0Ak0B
185 182 184 breqtrd φseq0+n0k0BFnj0Ak0B
186 9 10 12 33 167 185 2clim φseq0+Hj0Ak0B