Metamath Proof Explorer


Theorem mertens

Description: Mertens' theorem. If A ( j ) is an absolutely convergent series and B ( k ) is convergent, then ( sum_ j e. NN0 A ( j ) x. sum_ k e. NN0 B ( k ) ) = sum_ k e. NN0 sum_ j e. ( 0 ... k ) ( A ( j ) x. B ( k - j ) ) (and this latter series is convergent). This latter sum is commonly known as the Cauchy product of the sequences. The proof follows the outline at http://en.wikipedia.org/wiki/Cauchy_product#Proof_of_Mertens.27_theorem . (Contributed by Mario Carneiro, 29-Apr-2014)

Ref Expression
Hypotheses mertens.1 φ j 0 F j = A
mertens.2 φ j 0 K j = A
mertens.3 φ j 0 A
mertens.4 φ k 0 G k = B
mertens.5 φ k 0 B
mertens.6 φ k 0 H k = j = 0 k A G k j
mertens.7 φ seq 0 + K dom
mertens.8 φ seq 0 + G dom
Assertion mertens φ seq 0 + H j 0 A k 0 B

Proof

Step Hyp Ref Expression
1 mertens.1 φ j 0 F j = A
2 mertens.2 φ j 0 K j = A
3 mertens.3 φ j 0 A
4 mertens.4 φ k 0 G k = B
5 mertens.5 φ k 0 B
6 mertens.6 φ k 0 H k = j = 0 k A G k j
7 mertens.7 φ seq 0 + K dom
8 mertens.8 φ seq 0 + G dom
9 nn0uz 0 = 0
10 0zd φ 0
11 seqex seq 0 + H V
12 11 a1i φ seq 0 + H V
13 fzfid φ k 0 0 k Fin
14 simpl φ k 0 φ
15 elfznn0 j 0 k j 0
16 14 15 3 syl2an φ k 0 j 0 k A
17 fveq2 i = k j G i = G k j
18 17 eleq1d i = k j G i G k j
19 4 5 eqeltrd φ k 0 G k
20 19 ralrimiva φ k 0 G k
21 fveq2 k = i G k = G i
22 21 eleq1d k = i G k G i
23 22 cbvralvw k 0 G k i 0 G i
24 20 23 sylib φ i 0 G i
25 24 ad2antrr φ k 0 j 0 k i 0 G i
26 fznn0sub j 0 k k j 0
27 26 adantl φ k 0 j 0 k k j 0
28 18 25 27 rspcdva φ k 0 j 0 k G k j
29 16 28 mulcld φ k 0 j 0 k A G k j
30 13 29 fsumcl φ k 0 j = 0 k A G k j
31 6 30 eqeltrd φ k 0 H k
32 9 10 31 serf φ seq 0 + H : 0
33 32 ffvelrnda φ m 0 seq 0 + H m
34 1 adantlr φ x + j 0 F j = A
35 2 adantlr φ x + j 0 K j = A
36 3 adantlr φ x + j 0 A
37 4 adantlr φ x + k 0 G k = B
38 5 adantlr φ x + k 0 B
39 6 adantlr φ x + k 0 H k = j = 0 k A G k j
40 7 adantr φ x + seq 0 + K dom
41 8 adantr φ x + seq 0 + G dom
42 simpr φ x + x +
43 fveq2 l = k G l = G k
44 43 cbvsumv l i + 1 G l = k i + 1 G k
45 fvoveq1 i = n i + 1 = n + 1
46 45 sumeq1d i = n k i + 1 G k = k n + 1 G k
47 44 46 syl5eq i = n l i + 1 G l = k n + 1 G k
48 47 fveq2d i = n l i + 1 G l = k n + 1 G k
49 48 eqeq2d i = n u = l i + 1 G l u = k n + 1 G k
50 49 cbvrexvw i 0 s 1 u = l i + 1 G l n 0 s 1 u = k n + 1 G k
51 eqeq1 u = z u = k n + 1 G k z = k n + 1 G k
52 51 rexbidv u = z n 0 s 1 u = k n + 1 G k n 0 s 1 z = k n + 1 G k
53 50 52 syl5bb u = z i 0 s 1 u = l i + 1 G l n 0 s 1 z = k n + 1 G k
54 53 cbvabv u | i 0 s 1 u = l i + 1 G l = z | n 0 s 1 z = k n + 1 G k
55 fveq2 i = j K i = K j
56 55 cbvsumv i 0 K i = j 0 K j
57 56 oveq1i i 0 K i + 1 = j 0 K j + 1
58 57 oveq2i x 2 i 0 K i + 1 = x 2 j 0 K j + 1
59 58 breq2i i u + 1 G i < x 2 i 0 K i + 1 i u + 1 G i < x 2 j 0 K j + 1
60 fveq2 i = k G i = G k
61 60 cbvsumv i u + 1 G i = k u + 1 G k
62 fvoveq1 u = n u + 1 = n + 1
63 62 sumeq1d u = n k u + 1 G k = k n + 1 G k
64 61 63 syl5eq u = n i u + 1 G i = k n + 1 G k
65 64 fveq2d u = n i u + 1 G i = k n + 1 G k
66 65 breq1d u = n i u + 1 G i < x 2 j 0 K j + 1 k n + 1 G k < x 2 j 0 K j + 1
67 59 66 syl5bb u = n i u + 1 G i < x 2 i 0 K i + 1 k n + 1 G k < x 2 j 0 K j + 1
68 67 cbvralvw u s i u + 1 G i < x 2 i 0 K i + 1 n s k n + 1 G k < x 2 j 0 K j + 1
69 68 anbi2i s u s i u + 1 G i < x 2 i 0 K i + 1 s n s k n + 1 G k < x 2 j 0 K j + 1
70 34 35 36 37 38 39 40 41 42 54 69 mertenslem2 φ x + y 0 m y j = 0 m A k m - j + 1 B < x
71 eluznn0 y 0 m y m 0
72 fzfid φ m 0 0 m Fin
73 simpll φ m 0 j 0 m φ
74 elfznn0 j 0 m j 0
75 74 adantl φ m 0 j 0 m j 0
76 9 10 4 5 8 isumcl φ k 0 B
77 76 adantr φ j 0 k 0 B
78 1 3 eqeltrd φ j 0 F j
79 77 78 mulcld φ j 0 k 0 B F j
80 73 75 79 syl2anc φ m 0 j 0 m k 0 B F j
81 fzfid φ m 0 j 0 m 0 m j Fin
82 simplll φ m 0 j 0 m k 0 m j φ
83 74 ad2antlr φ m 0 j 0 m k 0 m j j 0
84 82 83 3 syl2anc φ m 0 j 0 m k 0 m j A
85 elfznn0 k 0 m j k 0
86 85 adantl φ m 0 j 0 m k 0 m j k 0
87 82 86 19 syl2anc φ m 0 j 0 m k 0 m j G k
88 84 87 mulcld φ m 0 j 0 m k 0 m j A G k
89 81 88 fsumcl φ m 0 j 0 m k = 0 m j A G k
90 72 80 89 fsumsub φ m 0 j = 0 m k 0 B F j k = 0 m j A G k = j = 0 m k 0 B F j j = 0 m k = 0 m j A G k
91 73 75 3 syl2anc φ m 0 j 0 m A
92 76 ad2antrr φ m 0 j 0 m k 0 B
93 81 87 fsumcl φ m 0 j 0 m k = 0 m j G k
94 91 92 93 subdid φ m 0 j 0 m A k 0 B k = 0 m j G k = A k 0 B A k = 0 m j G k
95 eqid m - j + 1 = m - j + 1
96 fznn0sub j 0 m m j 0
97 96 adantl φ m 0 j 0 m m j 0
98 peano2nn0 m j 0 m - j + 1 0
99 97 98 syl φ m 0 j 0 m m - j + 1 0
100 99 nn0zd φ m 0 j 0 m m - j + 1
101 simplll φ m 0 j 0 m k m - j + 1 φ
102 eluznn0 m - j + 1 0 k m - j + 1 k 0
103 99 102 sylan φ m 0 j 0 m k m - j + 1 k 0
104 101 103 4 syl2anc φ m 0 j 0 m k m - j + 1 G k = B
105 101 103 5 syl2anc φ m 0 j 0 m k m - j + 1 B
106 8 ad2antrr φ m 0 j 0 m seq 0 + G dom
107 73 4 sylan φ m 0 j 0 m k 0 G k = B
108 73 5 sylan φ m 0 j 0 m k 0 B
109 107 108 eqeltrd φ m 0 j 0 m k 0 G k
110 9 99 109 iserex φ m 0 j 0 m seq 0 + G dom seq m - j + 1 + G dom
111 106 110 mpbid φ m 0 j 0 m seq m - j + 1 + G dom
112 95 100 104 105 111 isumcl φ m 0 j 0 m k m - j + 1 B
113 9 95 99 107 108 106 isumsplit φ m 0 j 0 m k 0 B = k = 0 m j + 1 - 1 B + k m - j + 1 B
114 97 nn0cnd φ m 0 j 0 m m j
115 ax-1cn 1
116 pncan m j 1 m j + 1 - 1 = m j
117 114 115 116 sylancl φ m 0 j 0 m m j + 1 - 1 = m j
118 117 oveq2d φ m 0 j 0 m 0 m j + 1 - 1 = 0 m j
119 118 sumeq1d φ m 0 j 0 m k = 0 m j + 1 - 1 B = k = 0 m j B
120 82 86 4 syl2anc φ m 0 j 0 m k 0 m j G k = B
121 120 sumeq2dv φ m 0 j 0 m k = 0 m j G k = k = 0 m j B
122 119 121 eqtr4d φ m 0 j 0 m k = 0 m j + 1 - 1 B = k = 0 m j G k
123 122 oveq1d φ m 0 j 0 m k = 0 m j + 1 - 1 B + k m - j + 1 B = k = 0 m j G k + k m - j + 1 B
124 113 123 eqtrd φ m 0 j 0 m k 0 B = k = 0 m j G k + k m - j + 1 B
125 93 112 124 mvrladdd φ m 0 j 0 m k 0 B k = 0 m j G k = k m - j + 1 B
126 125 oveq2d φ m 0 j 0 m A k 0 B k = 0 m j G k = A k m - j + 1 B
127 3 77 mulcomd φ j 0 A k 0 B = k 0 B A
128 1 oveq2d φ j 0 k 0 B F j = k 0 B A
129 127 128 eqtr4d φ j 0 A k 0 B = k 0 B F j
130 73 75 129 syl2anc φ m 0 j 0 m A k 0 B = k 0 B F j
131 81 91 87 fsummulc2 φ m 0 j 0 m A k = 0 m j G k = k = 0 m j A G k
132 130 131 oveq12d φ m 0 j 0 m A k 0 B A k = 0 m j G k = k 0 B F j k = 0 m j A G k
133 94 126 132 3eqtr3rd φ m 0 j 0 m k 0 B F j k = 0 m j A G k = A k m - j + 1 B
134 133 sumeq2dv φ m 0 j = 0 m k 0 B F j k = 0 m j A G k = j = 0 m A k m - j + 1 B
135 fveq2 n = j F n = F j
136 135 oveq2d n = j k 0 B F n = k 0 B F j
137 eqid n 0 k 0 B F n = n 0 k 0 B F n
138 ovex k 0 B F j V
139 136 137 138 fvmpt j 0 n 0 k 0 B F n j = k 0 B F j
140 75 139 syl φ m 0 j 0 m n 0 k 0 B F n j = k 0 B F j
141 simpr φ m 0 m 0
142 141 9 eleqtrdi φ m 0 m 0
143 140 142 80 fsumser φ m 0 j = 0 m k 0 B F j = seq 0 + n 0 k 0 B F n m
144 fveq2 n = k G n = G k
145 144 oveq2d n = k A G n = A G k
146 fveq2 n = k j G n = G k j
147 146 oveq2d n = k j A G n = A G k j
148 88 anasss φ m 0 j 0 m k 0 m j A G k
149 145 147 148 fsum0diag2 φ m 0 j = 0 m k = 0 m j A G k = k = 0 m j = 0 k A G k j
150 simpll φ m 0 k 0 m φ
151 elfznn0 k 0 m k 0
152 151 adantl φ m 0 k 0 m k 0
153 150 152 6 syl2anc φ m 0 k 0 m H k = j = 0 k A G k j
154 150 152 30 syl2anc φ m 0 k 0 m j = 0 k A G k j
155 153 142 154 fsumser φ m 0 k = 0 m j = 0 k A G k j = seq 0 + H m
156 149 155 eqtrd φ m 0 j = 0 m k = 0 m j A G k = seq 0 + H m
157 143 156 oveq12d φ m 0 j = 0 m k 0 B F j j = 0 m k = 0 m j A G k = seq 0 + n 0 k 0 B F n m seq 0 + H m
158 90 134 157 3eqtr3rd φ m 0 seq 0 + n 0 k 0 B F n m seq 0 + H m = j = 0 m A k m - j + 1 B
159 158 fveq2d φ m 0 seq 0 + n 0 k 0 B F n m seq 0 + H m = j = 0 m A k m - j + 1 B
160 159 breq1d φ m 0 seq 0 + n 0 k 0 B F n m seq 0 + H m < x j = 0 m A k m - j + 1 B < x
161 71 160 sylan2 φ y 0 m y seq 0 + n 0 k 0 B F n m seq 0 + H m < x j = 0 m A k m - j + 1 B < x
162 161 anassrs φ y 0 m y seq 0 + n 0 k 0 B F n m seq 0 + H m < x j = 0 m A k m - j + 1 B < x
163 162 ralbidva φ y 0 m y seq 0 + n 0 k 0 B F n m seq 0 + H m < x m y j = 0 m A k m - j + 1 B < x
164 163 rexbidva φ y 0 m y seq 0 + n 0 k 0 B F n m seq 0 + H m < x y 0 m y j = 0 m A k m - j + 1 B < x
165 164 adantr φ x + y 0 m y seq 0 + n 0 k 0 B F n m seq 0 + H m < x y 0 m y j = 0 m A k m - j + 1 B < x
166 70 165 mpbird φ x + y 0 m y seq 0 + n 0 k 0 B F n m seq 0 + H m < x
167 166 ralrimiva φ x + y 0 m y seq 0 + n 0 k 0 B F n m seq 0 + H m < x
168 1 fveq2d φ j 0 F j = A
169 2 168 eqtr4d φ j 0 K j = F j
170 9 10 169 78 7 abscvgcvg φ seq 0 + F dom
171 9 10 1 3 170 isumclim2 φ seq 0 + F j 0 A
172 78 ralrimiva φ j 0 F j
173 fveq2 j = m F j = F m
174 173 eleq1d j = m F j F m
175 174 rspccva j 0 F j m 0 F m
176 172 175 sylan φ m 0 F m
177 fveq2 n = m F n = F m
178 177 oveq2d n = m k 0 B F n = k 0 B F m
179 ovex k 0 B F m V
180 178 137 179 fvmpt m 0 n 0 k 0 B F n m = k 0 B F m
181 180 adantl φ m 0 n 0 k 0 B F n m = k 0 B F m
182 9 10 76 171 176 181 isermulc2 φ seq 0 + n 0 k 0 B F n k 0 B j 0 A
183 9 10 1 3 170 isumcl φ j 0 A
184 76 183 mulcomd φ k 0 B j 0 A = j 0 A k 0 B
185 182 184 breqtrd φ seq 0 + n 0 k 0 B F n j 0 A k 0 B
186 9 10 12 33 167 185 2clim φ seq 0 + H j 0 A k 0 B