Metamath Proof Explorer


Theorem neiptopnei

Description: Lemma for neiptopreu . (Contributed by Thierry Arnoux, 7-Jan-2018)

Ref Expression
Hypotheses neiptop.o J=a𝒫X|paaNp
neiptop.0 φN:X𝒫𝒫X
neiptop.1 φpXabbXaNpbNp
neiptop.2 φpXfiNpNp
neiptop.3 φpXaNppa
neiptop.4 φpXaNpbNpqbaNq
neiptop.5 φpXXNp
Assertion neiptopnei φN=pXneiJp

Proof

Step Hyp Ref Expression
1 neiptop.o J=a𝒫X|paaNp
2 neiptop.0 φN:X𝒫𝒫X
3 neiptop.1 φpXabbXaNpbNp
4 neiptop.2 φpXfiNpNp
5 neiptop.3 φpXaNppa
6 neiptop.4 φpXaNpbNpqbaNq
7 neiptop.5 φpXXNp
8 2 feqmptd φN=pXNp
9 2 ffvelcdmda φpXNp𝒫𝒫X
10 9 adantr φpXcNpNp𝒫𝒫X
11 10 elpwid φpXcNpNp𝒫X
12 simpr φpXcNpcNp
13 11 12 sseldd φpXcNpc𝒫X
14 13 elpwid φpXcNpcX
15 1 2 3 4 5 6 7 neiptopuni φX=J
16 15 adantr φpXX=J
17 16 adantr φpXcNpX=J
18 14 17 sseqtrd φpXcNpcJ
19 ssrab2 qX|cNqX
20 19 a1i φpXcNpqX|cNqX
21 fveq2 q=rNq=Nr
22 21 eleq2d q=rcNqcNr
23 22 elrab rqX|cNqrXcNr
24 simp-5l φpXcNprXcNrbNrbqX|cNqφ
25 simpr1l φpXcNprXcNrbNrbqX|cNqrX
26 25 3anassrs φpXcNprXcNrbNrbqX|cNqrX
27 simpr φpXcNprXcNrbNrbqX|cNqbqX|cNq
28 simplr φpXcNprXcNrbNrbqX|cNqbNr
29 sseq1 a=baqX|cNqbqX|cNq
30 29 3anbi2d a=bφrXaqX|cNqqX|cNqXφrXbqX|cNqqX|cNqX
31 eleq1w a=baNrbNr
32 30 31 anbi12d a=bφrXaqX|cNqqX|cNqXaNrφrXbqX|cNqqX|cNqXbNr
33 32 imbi1d a=bφrXaqX|cNqqX|cNqXaNrqX|cNqNrφrXbqX|cNqqX|cNqXbNrqX|cNqNr
34 simpl1l φrXaqX|cNqqX|cNqXaNrφ
35 1 2 3 4 5 6 7 neiptoptop φJTop
36 35 uniexd φJV
37 15 36 eqeltrd φXV
38 rabexg XVqX|cNqV
39 sseq2 b=qX|cNqabaqX|cNq
40 sseq1 b=qX|cNqbXqX|cNqX
41 39 40 3anbi23d b=qX|cNqφrXabbXφrXaqX|cNqqX|cNqX
42 41 anbi1d b=qX|cNqφrXabbXaNrφrXaqX|cNqqX|cNqXaNr
43 eleq1 b=qX|cNqbNrqX|cNqNr
44 42 43 imbi12d b=qX|cNqφrXabbXaNrbNrφrXaqX|cNqqX|cNqXaNrqX|cNqNr
45 eleq1w p=rpXrX
46 45 anbi2d p=rφpXφrX
47 46 3anbi1d p=rφpXabbXφrXabbX
48 fveq2 p=rNp=Nr
49 48 eleq2d p=raNpaNr
50 47 49 anbi12d p=rφpXabbXaNpφrXabbXaNr
51 48 eleq2d p=rbNpbNr
52 50 51 imbi12d p=rφpXabbXaNpbNpφrXabbXaNrbNr
53 52 3 chvarvv φrXabbXaNrbNr
54 44 53 vtoclg qX|cNqVφrXaqX|cNqqX|cNqXaNrqX|cNqNr
55 37 38 54 3syl φφrXaqX|cNqqX|cNqXaNrqX|cNqNr
56 34 55 mpcom φrXaqX|cNqqX|cNqXaNrqX|cNqNr
57 33 56 chvarvv φrXbqX|cNqqX|cNqXbNrqX|cNqNr
58 57 3an1rs φrXbqX|cNqbNrqX|cNqXqX|cNqNr
59 19 58 mpan2 φrXbqX|cNqbNrqX|cNqNr
60 24 26 27 28 59 syl211anc φpXcNprXcNrbNrbqX|cNqqX|cNqNr
61 simplll φpXcNprXcNrφ
62 simprl φpXcNprXcNrrX
63 simprr φpXcNprXcNrcNr
64 48 eleq2d p=rcNpcNr
65 46 64 anbi12d p=rφpXcNpφrXcNr
66 fveq2 q=sNq=Ns
67 66 eleq2d q=scNqcNs
68 67 cbvralvw qbcNqsbcNs
69 68 a1i p=rqbcNqsbcNs
70 48 69 rexeqbidv p=rbNpqbcNqbNrsbcNs
71 65 70 imbi12d p=rφpXcNpbNpqbcNqφrXcNrbNrsbcNs
72 eleq1w a=caNpcNp
73 72 anbi2d a=cφpXaNpφpXcNp
74 eleq1w a=caNqcNq
75 74 rexralbidv a=cbNpqbaNqbNpqbcNq
76 73 75 imbi12d a=cφpXaNpbNpqbaNqφpXcNpbNpqbcNq
77 76 6 chvarvv φpXcNpbNpqbcNq
78 71 77 chvarvv φrXcNrbNrsbcNs
79 2 ffvelcdmda φrXNr𝒫𝒫X
80 79 elpwid φrXNr𝒫X
81 80 sselda φrXbNrb𝒫X
82 81 elpwid φrXbNrbX
83 82 sselda φrXbNrsbsX
84 83 a1d φrXbNrsbcNssX
85 84 ancrd φrXbNrsbcNssXcNs
86 85 ralimdva φrXbNrsbcNssbsXcNs
87 86 reximdva φrXbNrsbcNsbNrsbsXcNs
88 87 adantr φrXcNrbNrsbcNsbNrsbsXcNs
89 78 88 mpd φrXcNrbNrsbsXcNs
90 67 elrab sqX|cNqsXcNs
91 90 ralbii sbsqX|cNqsbsXcNs
92 91 rexbii bNrsbsqX|cNqbNrsbsXcNs
93 89 92 sylibr φrXcNrbNrsbsqX|cNq
94 dfss3 bqX|cNqsbsqX|cNq
95 94 biimpri sbsqX|cNqbqX|cNq
96 95 reximi bNrsbsqX|cNqbNrbqX|cNq
97 93 96 syl φrXcNrbNrbqX|cNq
98 61 62 63 97 syl21anc φpXcNprXcNrbNrbqX|cNq
99 60 98 r19.29a φpXcNprXcNrqX|cNqNr
100 23 99 sylan2b φpXcNprqX|cNqqX|cNqNr
101 100 ralrimiva φpXcNprqX|cNqqX|cNqNr
102 48 eleq2d p=rqX|cNqNpqX|cNqNr
103 102 cbvralvw pqX|cNqqX|cNqNprqX|cNqqX|cNqNr
104 101 103 sylibr φpXcNppqX|cNqqX|cNqNp
105 1 neipeltop qX|cNqJqX|cNqXpqX|cNqqX|cNqNp
106 20 104 105 sylanbrc φpXcNpqX|cNqJ
107 simpr φpXpX
108 107 anim1i φpXcNppXcNp
109 fveq2 q=pNq=Np
110 109 eleq2d q=pcNqcNp
111 110 elrab pqX|cNqpXcNp
112 108 111 sylibr φpXcNppqX|cNq
113 nfv qφpXcNp
114 nfrab1 _qqX|cNq
115 nfcv _qc
116 rabid qqX|cNqqXcNq
117 simplll φpXcNpqXcNqφ
118 simprl φpXcNpqXcNqqX
119 simprr φpXcNpqXcNqcNq
120 eleq1w p=qpXqX
121 120 anbi2d p=qφpXφqX
122 fveq2 p=qNp=Nq
123 122 eleq2d p=qcNpcNq
124 121 123 anbi12d p=qφpXcNpφqXcNq
125 elequ1 p=qpcqc
126 124 125 imbi12d p=qφpXcNppcφqXcNqqc
127 elequ2 a=cpapc
128 73 127 imbi12d a=cφpXaNppaφpXcNppc
129 128 5 chvarvv φpXcNppc
130 126 129 chvarvv φqXcNqqc
131 117 118 119 130 syl21anc φpXcNpqXcNqqc
132 131 ex φpXcNpqXcNqqc
133 116 132 biimtrid φpXcNpqqX|cNqqc
134 113 114 115 133 ssrd φpXcNpqX|cNqc
135 eleq2 d=qX|cNqpdpqX|cNq
136 sseq1 d=qX|cNqdcqX|cNqc
137 135 136 anbi12d d=qX|cNqpddcpqX|cNqqX|cNqc
138 137 rspcev qX|cNqJpqX|cNqqX|cNqcdJpddc
139 106 112 134 138 syl12anc φpXcNpdJpddc
140 18 139 jca φpXcNpcJdJpddc
141 nfv dφpX
142 nfv dcJ
143 nfre1 ddJpddc
144 142 143 nfan dcJdJpddc
145 141 144 nfan dφpXcJdJpddc
146 simplll φpXcJdJpddcdNpdcφpX
147 simpr φpXcJdJpddcdNpdcdc
148 simpr1l φpXcJdJpddcdNpdccJ
149 148 3anassrs φpXcJdJpddcdNpdccJ
150 146 16 syl φpXcJdJpddcdNpdcX=J
151 149 150 sseqtrrd φpXcJdJpddcdNpdccX
152 simplr φpXcJdJpddcdNpdcdNp
153 sseq1 a=dacdc
154 153 3anbi2d a=dφpXaccXφpXdccX
155 eleq1w a=daNpdNp
156 154 155 anbi12d a=dφpXaccXaNpφpXdccXdNp
157 156 imbi1d a=dφpXaccXaNpcNpφpXdccXdNpcNp
158 sseq2 b=cabac
159 sseq1 b=cbXcX
160 158 159 3anbi23d b=cφpXabbXφpXaccX
161 160 anbi1d b=cφpXabbXaNpφpXaccXaNp
162 eleq1w b=cbNpcNp
163 161 162 imbi12d b=cφpXabbXaNpbNpφpXaccXaNpcNp
164 163 3 chvarvv φpXaccXaNpcNp
165 157 164 chvarvv φpXdccXdNpcNp
166 146 147 151 152 165 syl31anc φpXcJdJpddcdNpdccNp
167 1 neipeltop dJdXpddNp
168 167 simprbi dJpddNp
169 168 r19.21bi dJpddNp
170 169 anim1i dJpddcdNpdc
171 170 anasss dJpddcdNpdc
172 171 reximi2 dJpddcdNpdc
173 172 ad2antll φpXcJdJpddcdNpdc
174 145 166 173 r19.29af φpXcJdJpddccNp
175 140 174 impbida φpXcNpcJdJpddc
176 107 16 eleqtrd φpXpJ
177 eqid J=J
178 177 isneip JToppJcneiJpcJdJpddc
179 35 176 178 syl2an2r φpXcneiJpcJdJpddc
180 175 179 bitr4d φpXcNpcneiJp
181 180 eqrdv φpXNp=neiJp
182 181 mpteq2dva φpXNp=pXneiJp
183 8 182 eqtrd φN=pXneiJp