Metamath Proof Explorer


Theorem noinfbnd2

Description: Bounding law from below for the surreal infimum. Analagous to proposition 4.3 of Lipparini p. 6. (Contributed by Scott Fenton, 9-Aug-2024)

Ref Expression
Hypothesis noinfbnd2.1 T=ifxByB¬y<sxιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜gy|uBydomuvB¬u<svusucy=vsucyιx|uBgdomuvB¬u<svusucg=vsucgug=x
Assertion noinfbnd2 BNoBVZNobBZ<sb¬T<sZdomT

Proof

Step Hyp Ref Expression
1 noinfbnd2.1 T=ifxByB¬y<sxιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜gy|uBydomuvB¬u<svusucy=vsucyιx|uBgdomuvB¬u<svusucg=vsucgug=x
2 nfv xBNoBVZNobBZ<sb
3 nfre1 xxByB¬y<sx
4 nfriota1 _xιxB|yB¬y<sx
5 4 nfdm _xdomιxB|yB¬y<sx
6 nfcv _x1𝑜
7 5 6 nfop _xdomιxB|yB¬y<sx1𝑜
8 7 nfsn _xdomιxB|yB¬y<sx1𝑜
9 4 8 nfun _xιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜
10 nfcv _xy|uBydomuvB¬u<svusucy=vsucy
11 nfiota1 _xιx|uBgdomuvB¬u<svusucg=vsucgug=x
12 10 11 nfmpt _xgy|uBydomuvB¬u<svusucy=vsucyιx|uBgdomuvB¬u<svusucg=vsucgug=x
13 3 9 12 nfif _xifxByB¬y<sxιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜gy|uBydomuvB¬u<svusucy=vsucyιx|uBgdomuvB¬u<svusucg=vsucgug=x
14 1 13 nfcxfr _xT
15 nfcv _x<s
16 nfcv _xZ
17 14 nfdm _xdomT
18 16 17 nfres _xZdomT
19 14 15 18 nfbr xT<sZdomT
20 19 nfn x¬T<sZdomT
21 2 20 nfim xBNoBVZNobBZ<sb¬T<sZdomT
22 noinfbnd2lem1 xByB¬y<sxBNoBVZNobBZ<sb¬xdomx1𝑜<sZsucdomx
23 22 3expb xByB¬y<sxBNoBVZNobBZ<sb¬xdomx1𝑜<sZsucdomx
24 rspe xByB¬y<sxxByB¬y<sx
25 24 adantr xByB¬y<sxBNoBVZNobBZ<sbxByB¬y<sx
26 25 iftrued xByB¬y<sxBNoBVZNobBZ<sbifxByB¬y<sxιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜gy|uBydomuvB¬u<svusucy=vsucyιx|uBgdomuvB¬u<svusucg=vsucgug=x=ιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜
27 simpl xByB¬y<sxBNoBVZNobBZ<sbxByB¬y<sx
28 simprl1 xByB¬y<sxBNoBVZNobBZ<sbBNo
29 nominmo BNo*xByB¬y<sx
30 28 29 syl xByB¬y<sxBNoBVZNobBZ<sb*xByB¬y<sx
31 reu5 ∃!xByB¬y<sxxByB¬y<sx*xByB¬y<sx
32 25 30 31 sylanbrc xByB¬y<sxBNoBVZNobBZ<sb∃!xByB¬y<sx
33 riota1 ∃!xByB¬y<sxxByB¬y<sxιxB|yB¬y<sx=x
34 32 33 syl xByB¬y<sxBNoBVZNobBZ<sbxByB¬y<sxιxB|yB¬y<sx=x
35 27 34 mpbid xByB¬y<sxBNoBVZNobBZ<sbιxB|yB¬y<sx=x
36 35 dmeqd xByB¬y<sxBNoBVZNobBZ<sbdomιxB|yB¬y<sx=domx
37 36 opeq1d xByB¬y<sxBNoBVZNobBZ<sbdomιxB|yB¬y<sx1𝑜=domx1𝑜
38 37 sneqd xByB¬y<sxBNoBVZNobBZ<sbdomιxB|yB¬y<sx1𝑜=domx1𝑜
39 35 38 uneq12d xByB¬y<sxBNoBVZNobBZ<sbιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜=xdomx1𝑜
40 26 39 eqtrd xByB¬y<sxBNoBVZNobBZ<sbifxByB¬y<sxιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜gy|uBydomuvB¬u<svusucy=vsucyιx|uBgdomuvB¬u<svusucg=vsucgug=x=xdomx1𝑜
41 1 40 eqtrid xByB¬y<sxBNoBVZNobBZ<sbT=xdomx1𝑜
42 41 dmeqd xByB¬y<sxBNoBVZNobBZ<sbdomT=domxdomx1𝑜
43 1oex 1𝑜V
44 43 dmsnop domdomx1𝑜=domx
45 44 uneq2i domxdomdomx1𝑜=domxdomx
46 dmun domxdomx1𝑜=domxdomdomx1𝑜
47 df-suc sucdomx=domxdomx
48 45 46 47 3eqtr4ri sucdomx=domxdomx1𝑜
49 42 48 eqtr4di xByB¬y<sxBNoBVZNobBZ<sbdomT=sucdomx
50 49 reseq2d xByB¬y<sxBNoBVZNobBZ<sbZdomT=Zsucdomx
51 41 50 breq12d xByB¬y<sxBNoBVZNobBZ<sbT<sZdomTxdomx1𝑜<sZsucdomx
52 23 51 mtbird xByB¬y<sxBNoBVZNobBZ<sb¬T<sZdomT
53 52 exp31 xByB¬y<sxBNoBVZNobBZ<sb¬T<sZdomT
54 21 53 rexlimi xByB¬y<sxBNoBVZNobBZ<sb¬T<sZdomT
55 54 imp xByB¬y<sxBNoBVZNobBZ<sb¬T<sZdomT
56 simprl3 ¬xByB¬y<sxBNoBVZNobBZ<sbZNo
57 1 noinfno BNoBVTNo
58 57 3adant3 BNoBVZNoTNo
59 58 ad2antrl ¬xByB¬y<sxBNoBVZNobBZ<sbTNo
60 nodmon TNodomTOn
61 59 60 syl ¬xByB¬y<sxBNoBVZNobBZ<sbdomTOn
62 noreson ZNodomTOnZdomTNo
63 56 61 62 syl2anc ¬xByB¬y<sxBNoBVZNobBZ<sbZdomTNo
64 nofun TNoFunT
65 funrel FunTRelT
66 58 64 65 3syl BNoBVZNoRelT
67 66 ad2antrl ¬xByB¬y<sxBNoBVZNobBZ<sbRelT
68 resdm RelTTdomT=T
69 67 68 syl ¬xByB¬y<sxBNoBVZNobBZ<sbTdomT=T
70 69 59 eqeltrd ¬xByB¬y<sxBNoBVZNobBZ<sbTdomTNo
71 resdmss domZdomTdomT
72 71 a1i ¬xByB¬y<sxBNoBVZNobBZ<sbdomZdomTdomT
73 resdmss domTdomTdomT
74 73 a1i ¬xByB¬y<sxBNoBVZNobBZ<sbdomTdomTdomT
75 1 noinfdm ¬xByB¬y<sxdomT=g|pBgdompqB¬p<sqpsucg=qsucg
76 75 eqabrd ¬xByB¬y<sxgdomTpBgdompqB¬p<sqpsucg=qsucg
77 76 adantr ¬xByB¬y<sxBNoBVZNobBZ<sbgdomTpBgdompqB¬p<sqpsucg=qsucg
78 simpll ¬xByB¬y<sxBNoBVZNobBZ<sbpBgdompqB¬p<sqpsucg=qsucg¬xByB¬y<sx
79 simprl1 ¬xByB¬y<sxBNoBVZNobBZ<sbBNo
80 79 adantr ¬xByB¬y<sxBNoBVZNobBZ<sbpBgdompqB¬p<sqpsucg=qsucgBNo
81 simprl2 ¬xByB¬y<sxBNoBVZNobBZ<sbBV
82 81 adantr ¬xByB¬y<sxBNoBVZNobBZ<sbpBgdompqB¬p<sqpsucg=qsucgBV
83 simprl ¬xByB¬y<sxBNoBVZNobBZ<sbpBgdompqB¬p<sqpsucg=qsucgpB
84 simprrl ¬xByB¬y<sxBNoBVZNobBZ<sbpBgdompqB¬p<sqpsucg=qsucggdomp
85 simprrr ¬xByB¬y<sxBNoBVZNobBZ<sbpBgdompqB¬p<sqpsucg=qsucgqB¬p<sqpsucg=qsucg
86 breq2 q=vp<sqp<sv
87 86 notbid q=v¬p<sq¬p<sv
88 reseq1 q=vqsucg=vsucg
89 88 eqeq2d q=vpsucg=qsucgpsucg=vsucg
90 87 89 imbi12d q=v¬p<sqpsucg=qsucg¬p<svpsucg=vsucg
91 90 cbvralvw qB¬p<sqpsucg=qsucgvB¬p<svpsucg=vsucg
92 85 91 sylib ¬xByB¬y<sxBNoBVZNobBZ<sbpBgdompqB¬p<sqpsucg=qsucgvB¬p<svpsucg=vsucg
93 1 noinfres ¬xByB¬y<sxBNoBVpBgdompvB¬p<svpsucg=vsucgTsucg=psucg
94 78 80 82 83 84 92 93 syl123anc ¬xByB¬y<sxBNoBVZNobBZ<sbpBgdompqB¬p<sqpsucg=qsucgTsucg=psucg
95 breq2 b=pZ<sbZ<sp
96 simplrr ¬xByB¬y<sxBNoBVZNobBZ<sbpBgdompqB¬p<sqpsucg=qsucgbBZ<sb
97 95 96 83 rspcdva ¬xByB¬y<sxBNoBVZNobBZ<sbpBgdompqB¬p<sqpsucg=qsucgZ<sp
98 56 adantr ¬xByB¬y<sxBNoBVZNobBZ<sbpBgdompqB¬p<sqpsucg=qsucgZNo
99 80 83 sseldd ¬xByB¬y<sxBNoBVZNobBZ<sbpBgdompqB¬p<sqpsucg=qsucgpNo
100 sltso <sOrNo
101 soasym <sOrNoZNopNoZ<sp¬p<sZ
102 100 101 mpan ZNopNoZ<sp¬p<sZ
103 98 99 102 syl2anc ¬xByB¬y<sxBNoBVZNobBZ<sbpBgdompqB¬p<sqpsucg=qsucgZ<sp¬p<sZ
104 97 103 mpd ¬xByB¬y<sxBNoBVZNobBZ<sbpBgdompqB¬p<sqpsucg=qsucg¬p<sZ
105 nodmon pNodompOn
106 99 105 syl ¬xByB¬y<sxBNoBVZNobBZ<sbpBgdompqB¬p<sqpsucg=qsucgdompOn
107 onelon dompOngdompgOn
108 106 84 107 syl2anc ¬xByB¬y<sxBNoBVZNobBZ<sbpBgdompqB¬p<sqpsucg=qsucggOn
109 onsucb gOnsucgOn
110 108 109 sylib ¬xByB¬y<sxBNoBVZNobBZ<sbpBgdompqB¬p<sqpsucg=qsucgsucgOn
111 sltres pNoZNosucgOnpsucg<sZsucgp<sZ
112 99 98 110 111 syl3anc ¬xByB¬y<sxBNoBVZNobBZ<sbpBgdompqB¬p<sqpsucg=qsucgpsucg<sZsucgp<sZ
113 104 112 mtod ¬xByB¬y<sxBNoBVZNobBZ<sbpBgdompqB¬p<sqpsucg=qsucg¬psucg<sZsucg
114 94 113 eqnbrtrd ¬xByB¬y<sxBNoBVZNobBZ<sbpBgdompqB¬p<sqpsucg=qsucg¬Tsucg<sZsucg
115 114 rexlimdvaa ¬xByB¬y<sxBNoBVZNobBZ<sbpBgdompqB¬p<sqpsucg=qsucg¬Tsucg<sZsucg
116 77 115 sylbid ¬xByB¬y<sxBNoBVZNobBZ<sbgdomT¬Tsucg<sZsucg
117 116 imp ¬xByB¬y<sxBNoBVZNobBZ<sbgdomT¬Tsucg<sZsucg
118 nodmord TNoOrddomT
119 ordsucss OrddomTgdomTsucgdomT
120 59 118 119 3syl ¬xByB¬y<sxBNoBVZNobBZ<sbgdomTsucgdomT
121 120 imp ¬xByB¬y<sxBNoBVZNobBZ<sbgdomTsucgdomT
122 121 resabs1d ¬xByB¬y<sxBNoBVZNobBZ<sbgdomTTdomTsucg=Tsucg
123 121 resabs1d ¬xByB¬y<sxBNoBVZNobBZ<sbgdomTZdomTsucg=Zsucg
124 122 123 breq12d ¬xByB¬y<sxBNoBVZNobBZ<sbgdomTTdomTsucg<sZdomTsucgTsucg<sZsucg
125 117 124 mtbird ¬xByB¬y<sxBNoBVZNobBZ<sbgdomT¬TdomTsucg<sZdomTsucg
126 125 ralrimiva ¬xByB¬y<sxBNoBVZNobBZ<sbgdomT¬TdomTsucg<sZdomTsucg
127 noresle ZdomTNoTdomTNodomZdomTdomTdomTdomTdomTgdomT¬TdomTsucg<sZdomTsucg¬TdomT<sZdomT
128 63 70 72 74 126 127 syl23anc ¬xByB¬y<sxBNoBVZNobBZ<sb¬TdomT<sZdomT
129 69 breq1d ¬xByB¬y<sxBNoBVZNobBZ<sbTdomT<sZdomTT<sZdomT
130 128 129 mtbid ¬xByB¬y<sxBNoBVZNobBZ<sb¬T<sZdomT
131 55 130 pm2.61ian BNoBVZNobBZ<sb¬T<sZdomT
132 simplr BNoBVZNo¬T<sZdomTbB¬T<sZdomT
133 simpll1 BNoBVZNo¬T<sZdomTbBBNo
134 simpll2 BNoBVZNo¬T<sZdomTbBBV
135 simpr BNoBVZNo¬T<sZdomTbBbB
136 1 noinfbnd1 BNoBVbBT<sbdomT
137 133 134 135 136 syl3anc BNoBVZNo¬T<sZdomTbBT<sbdomT
138 simpl3 BNoBVZNo¬T<sZdomTZNo
139 simpl1 BNoBVZNo¬T<sZdomTBNo
140 simpl2 BNoBVZNo¬T<sZdomTBV
141 139 140 57 syl2anc BNoBVZNo¬T<sZdomTTNo
142 141 60 syl BNoBVZNo¬T<sZdomTdomTOn
143 138 142 62 syl2anc BNoBVZNo¬T<sZdomTZdomTNo
144 143 adantr BNoBVZNo¬T<sZdomTbBZdomTNo
145 141 adantr BNoBVZNo¬T<sZdomTbBTNo
146 139 sselda BNoBVZNo¬T<sZdomTbBbNo
147 142 adantr BNoBVZNo¬T<sZdomTbBdomTOn
148 noreson bNodomTOnbdomTNo
149 146 147 148 syl2anc BNoBVZNo¬T<sZdomTbBbdomTNo
150 sotr2 <sOrNoZdomTNoTNobdomTNo¬T<sZdomTT<sbdomTZdomT<sbdomT
151 100 150 mpan ZdomTNoTNobdomTNo¬T<sZdomTT<sbdomTZdomT<sbdomT
152 144 145 149 151 syl3anc BNoBVZNo¬T<sZdomTbB¬T<sZdomTT<sbdomTZdomT<sbdomT
153 132 137 152 mp2and BNoBVZNo¬T<sZdomTbBZdomT<sbdomT
154 simpll3 BNoBVZNo¬T<sZdomTbBZNo
155 sltres ZNobNodomTOnZdomT<sbdomTZ<sb
156 154 146 147 155 syl3anc BNoBVZNo¬T<sZdomTbBZdomT<sbdomTZ<sb
157 153 156 mpd BNoBVZNo¬T<sZdomTbBZ<sb
158 157 ralrimiva BNoBVZNo¬T<sZdomTbBZ<sb
159 131 158 impbida BNoBVZNobBZ<sb¬T<sZdomT