Metamath Proof Explorer


Theorem noinfno

Description: The next several theorems deal with a surreal "infimum". This surreal will ultimately be shown to bound B above and bound the restriction of any surreal below. We begin by showing that the given expression actually defines a surreal number. (Contributed by Scott Fenton, 8-Aug-2024)

Ref Expression
Hypothesis noinfno.1 T=ifxByB¬y<sxιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜gy|uBydomuvB¬u<svusucy=vsucyιx|uBgdomuvB¬u<svusucg=vsucgug=x
Assertion noinfno BNoBVTNo

Proof

Step Hyp Ref Expression
1 noinfno.1 T=ifxByB¬y<sxιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜gy|uBydomuvB¬u<svusucy=vsucyιx|uBgdomuvB¬u<svusucg=vsucgug=x
2 iftrue xByB¬y<sxifxByB¬y<sxιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜gy|uBydomuvB¬u<svusucy=vsucyιx|uBgdomuvB¬u<svusucg=vsucgug=x=ιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜
3 2 adantr xByB¬y<sxBNoBVifxByB¬y<sxιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜gy|uBydomuvB¬u<svusucy=vsucyιx|uBgdomuvB¬u<svusucg=vsucgug=x=ιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜
4 simprl xByB¬y<sxBNoBVBNo
5 simpl xByB¬y<sxBNoBVxByB¬y<sx
6 nominmo BNo*xByB¬y<sx
7 6 ad2antrl xByB¬y<sxBNoBV*xByB¬y<sx
8 reu5 ∃!xByB¬y<sxxByB¬y<sx*xByB¬y<sx
9 5 7 8 sylanbrc xByB¬y<sxBNoBV∃!xByB¬y<sx
10 riotacl ∃!xByB¬y<sxιxB|yB¬y<sxB
11 9 10 syl xByB¬y<sxBNoBVιxB|yB¬y<sxB
12 4 11 sseldd xByB¬y<sxBNoBVιxB|yB¬y<sxNo
13 1oex 1𝑜V
14 13 prid1 1𝑜1𝑜2𝑜
15 14 noextend ιxB|yB¬y<sxNoιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜No
16 12 15 syl xByB¬y<sxBNoBVιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜No
17 3 16 eqeltrd xByB¬y<sxBNoBVifxByB¬y<sxιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜gy|uBydomuvB¬u<svusucy=vsucyιx|uBgdomuvB¬u<svusucg=vsucgug=xNo
18 iffalse ¬xByB¬y<sxifxByB¬y<sxιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜gy|uBydomuvB¬u<svusucy=vsucyιx|uBgdomuvB¬u<svusucg=vsucgug=x=gy|uBydomuvB¬u<svusucy=vsucyιx|uBgdomuvB¬u<svusucg=vsucgug=x
19 18 adantr ¬xByB¬y<sxBNoBVifxByB¬y<sxιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜gy|uBydomuvB¬u<svusucy=vsucyιx|uBgdomuvB¬u<svusucg=vsucgug=x=gy|uBydomuvB¬u<svusucy=vsucyιx|uBgdomuvB¬u<svusucg=vsucgug=x
20 funmpt Fungy|uBydomuvB¬u<svusucy=vsucyιx|uBgdomuvB¬u<svusucg=vsucgug=x
21 20 a1i ¬xByB¬y<sxBNoBVFungy|uBydomuvB¬u<svusucy=vsucyιx|uBgdomuvB¬u<svusucg=vsucgug=x
22 iotaex ιx|uBgdomuvB¬u<svusucg=vsucgug=xV
23 eqid gy|uBydomuvB¬u<svusucy=vsucyιx|uBgdomuvB¬u<svusucg=vsucgug=x=gy|uBydomuvB¬u<svusucy=vsucyιx|uBgdomuvB¬u<svusucg=vsucgug=x
24 22 23 dmmpti domgy|uBydomuvB¬u<svusucy=vsucyιx|uBgdomuvB¬u<svusucg=vsucgug=x=y|uBydomuvB¬u<svusucy=vsucy
25 simpl BNouBydomuvB¬u<svusucy=vsucyBNo
26 simprl BNouBydomuvB¬u<svusucy=vsucyuB
27 25 26 sseldd BNouBydomuvB¬u<svusucy=vsucyuNo
28 nodmon uNodomuOn
29 27 28 syl BNouBydomuvB¬u<svusucy=vsucydomuOn
30 simprrl BNouBydomuvB¬u<svusucy=vsucyydomu
31 onelon domuOnydomuyOn
32 29 30 31 syl2anc BNouBydomuvB¬u<svusucy=vsucyyOn
33 32 rexlimdvaa BNouBydomuvB¬u<svusucy=vsucyyOn
34 33 abssdv BNoy|uBydomuvB¬u<svusucy=vsucyOn
35 simplr BNoabuBab
36 ssel2 BNouBuNo
37 36 adantlr BNoabuBuNo
38 37 28 syl BNoabuBdomuOn
39 ontr1 domuOnabbdomuadomu
40 38 39 syl BNoabuBabbdomuadomu
41 35 40 mpand BNoabuBbdomuadomu
42 41 adantrd BNoabuBbdomuvB¬u<svusucb=vsucbadomu
43 reseq1 usucb=vsucbusucbsuca=vsucbsuca
44 onelon domuOnbdomubOn
45 38 44 sylan BNoabuBbdomubOn
46 onsucb bOnsucbOn
47 45 46 sylib BNoabuBbdomusucbOn
48 simpllr BNoabuBbdomuab
49 eloni bOnOrdb
50 45 49 syl BNoabuBbdomuOrdb
51 ordsucelsuc Ordbabsucasucb
52 50 51 syl BNoabuBbdomuabsucasucb
53 48 52 mpbid BNoabuBbdomusucasucb
54 onelss sucbOnsucasucbsucasucb
55 47 53 54 sylc BNoabuBbdomusucasucb
56 55 resabs1d BNoabuBbdomuusucbsuca=usuca
57 55 resabs1d BNoabuBbdomuvsucbsuca=vsuca
58 56 57 eqeq12d BNoabuBbdomuusucbsuca=vsucbsucausuca=vsuca
59 43 58 imbitrid BNoabuBbdomuusucb=vsucbusuca=vsuca
60 59 imim2d BNoabuBbdomu¬u<svusucb=vsucb¬u<svusuca=vsuca
61 60 ralimdv BNoabuBbdomuvB¬u<svusucb=vsucbvB¬u<svusuca=vsuca
62 61 expimpd BNoabuBbdomuvB¬u<svusucb=vsucbvB¬u<svusuca=vsuca
63 42 62 jcad BNoabuBbdomuvB¬u<svusucb=vsucbadomuvB¬u<svusuca=vsuca
64 63 reximdva BNoabuBbdomuvB¬u<svusucb=vsucbuBadomuvB¬u<svusuca=vsuca
65 64 expimpd BNoabuBbdomuvB¬u<svusucb=vsucbuBadomuvB¬u<svusuca=vsuca
66 vex bV
67 eleq1w y=bydomubdomu
68 suceq y=bsucy=sucb
69 68 reseq2d y=busucy=usucb
70 68 reseq2d y=bvsucy=vsucb
71 69 70 eqeq12d y=busucy=vsucyusucb=vsucb
72 71 imbi2d y=b¬u<svusucy=vsucy¬u<svusucb=vsucb
73 72 ralbidv y=bvB¬u<svusucy=vsucyvB¬u<svusucb=vsucb
74 67 73 anbi12d y=bydomuvB¬u<svusucy=vsucybdomuvB¬u<svusucb=vsucb
75 74 rexbidv y=buBydomuvB¬u<svusucy=vsucyuBbdomuvB¬u<svusucb=vsucb
76 66 75 elab by|uBydomuvB¬u<svusucy=vsucyuBbdomuvB¬u<svusucb=vsucb
77 76 anbi2i abby|uBydomuvB¬u<svusucy=vsucyabuBbdomuvB¬u<svusucb=vsucb
78 vex aV
79 eleq1w y=aydomuadomu
80 suceq y=asucy=suca
81 80 reseq2d y=ausucy=usuca
82 80 reseq2d y=avsucy=vsuca
83 81 82 eqeq12d y=ausucy=vsucyusuca=vsuca
84 83 imbi2d y=a¬u<svusucy=vsucy¬u<svusuca=vsuca
85 84 ralbidv y=avB¬u<svusucy=vsucyvB¬u<svusuca=vsuca
86 79 85 anbi12d y=aydomuvB¬u<svusucy=vsucyadomuvB¬u<svusuca=vsuca
87 86 rexbidv y=auBydomuvB¬u<svusucy=vsucyuBadomuvB¬u<svusuca=vsuca
88 78 87 elab ay|uBydomuvB¬u<svusucy=vsucyuBadomuvB¬u<svusuca=vsuca
89 65 77 88 3imtr4g BNoabby|uBydomuvB¬u<svusucy=vsucyay|uBydomuvB¬u<svusucy=vsucy
90 89 alrimivv BNoababby|uBydomuvB¬u<svusucy=vsucyay|uBydomuvB¬u<svusucy=vsucy
91 dftr2 Try|uBydomuvB¬u<svusucy=vsucyababby|uBydomuvB¬u<svusucy=vsucyay|uBydomuvB¬u<svusucy=vsucy
92 90 91 sylibr BNoTry|uBydomuvB¬u<svusucy=vsucy
93 dford5 Ordy|uBydomuvB¬u<svusucy=vsucyy|uBydomuvB¬u<svusucy=vsucyOnTry|uBydomuvB¬u<svusucy=vsucy
94 34 92 93 sylanbrc BNoOrdy|uBydomuvB¬u<svusucy=vsucy
95 94 ad2antrl ¬xByB¬y<sxBNoBVOrdy|uBydomuvB¬u<svusucy=vsucy
96 bdayfo bday:NoontoOn
97 fofun bday:NoontoOnFunbday
98 96 97 ax-mp Funbday
99 funimaexg FunbdayBVbdayBV
100 98 99 mpan BVbdayBV
101 100 uniexd BVbdayBV
102 101 adantl BNoBVbdayBV
103 102 adantl ¬xByB¬y<sxBNoBVbdayBV
104 bdayval uNobdayu=domu
105 27 104 syl BNouBydomuvB¬u<svusucy=vsucybdayu=domu
106 fofn bday:NoontoOnbdayFnNo
107 96 106 ax-mp bdayFnNo
108 fnfvima bdayFnNoBNouBbdayubdayB
109 107 108 mp3an1 BNouBbdayubdayB
110 109 adantrr BNouBydomuvB¬u<svusucy=vsucybdayubdayB
111 105 110 eqeltrrd BNouBydomuvB¬u<svusucy=vsucydomubdayB
112 elssuni domubdayBdomubdayB
113 111 112 syl BNouBydomuvB¬u<svusucy=vsucydomubdayB
114 113 30 sseldd BNouBydomuvB¬u<svusucy=vsucyybdayB
115 114 rexlimdvaa BNouBydomuvB¬u<svusucy=vsucyybdayB
116 115 abssdv BNoy|uBydomuvB¬u<svusucy=vsucybdayB
117 116 ad2antrl ¬xByB¬y<sxBNoBVy|uBydomuvB¬u<svusucy=vsucybdayB
118 103 117 ssexd ¬xByB¬y<sxBNoBVy|uBydomuvB¬u<svusucy=vsucyV
119 elong y|uBydomuvB¬u<svusucy=vsucyVy|uBydomuvB¬u<svusucy=vsucyOnOrdy|uBydomuvB¬u<svusucy=vsucy
120 118 119 syl ¬xByB¬y<sxBNoBVy|uBydomuvB¬u<svusucy=vsucyOnOrdy|uBydomuvB¬u<svusucy=vsucy
121 95 120 mpbird ¬xByB¬y<sxBNoBVy|uBydomuvB¬u<svusucy=vsucyOn
122 24 121 eqeltrid ¬xByB¬y<sxBNoBVdomgy|uBydomuvB¬u<svusucy=vsucyιx|uBgdomuvB¬u<svusucg=vsucgug=xOn
123 23 rnmpt rangy|uBydomuvB¬u<svusucy=vsucyιx|uBgdomuvB¬u<svusucg=vsucgug=x=z|gy|uBydomuvB¬u<svusucy=vsucyz=ιx|uBgdomuvB¬u<svusucg=vsucgug=x
124 eleq1w y=gydomugdomu
125 suceq y=gsucy=sucg
126 125 reseq2d y=gusucy=usucg
127 125 reseq2d y=gvsucy=vsucg
128 126 127 eqeq12d y=gusucy=vsucyusucg=vsucg
129 128 imbi2d y=g¬u<svusucy=vsucy¬u<svusucg=vsucg
130 129 ralbidv y=gvB¬u<svusucy=vsucyvB¬u<svusucg=vsucg
131 124 130 anbi12d y=gydomuvB¬u<svusucy=vsucygdomuvB¬u<svusucg=vsucg
132 131 rexbidv y=guBydomuvB¬u<svusucy=vsucyuBgdomuvB¬u<svusucg=vsucg
133 132 rexab gy|uBydomuvB¬u<svusucy=vsucyz=ιx|uBgdomuvB¬u<svusucg=vsucgug=xguBgdomuvB¬u<svusucg=vsucgz=ιx|uBgdomuvB¬u<svusucg=vsucgug=x
134 eqid ug=ug
135 fvex ugV
136 eqeq2 x=ugug=xug=ug
137 136 3anbi3d x=uggdomuvB¬u<svusucg=vsucgug=xgdomuvB¬u<svusucg=vsucgug=ug
138 135 137 spcev gdomuvB¬u<svusucg=vsucgug=ugxgdomuvB¬u<svusucg=vsucgug=x
139 134 138 mp3an3 gdomuvB¬u<svusucg=vsucgxgdomuvB¬u<svusucg=vsucgug=x
140 139 reximi uBgdomuvB¬u<svusucg=vsucguBxgdomuvB¬u<svusucg=vsucgug=x
141 rexcom4 uBxgdomuvB¬u<svusucg=vsucgug=xxuBgdomuvB¬u<svusucg=vsucgug=x
142 140 141 sylib uBgdomuvB¬u<svusucg=vsucgxuBgdomuvB¬u<svusucg=vsucgug=x
143 142 adantl ¬xByB¬y<sxBNoBVuBgdomuvB¬u<svusucg=vsucgxuBgdomuvB¬u<svusucg=vsucgug=x
144 noinfprefixmo BNo*xuBgdomuvB¬u<svusucg=vsucgug=x
145 144 ad2antrl ¬xByB¬y<sxBNoBV*xuBgdomuvB¬u<svusucg=vsucgug=x
146 145 adantr ¬xByB¬y<sxBNoBVuBgdomuvB¬u<svusucg=vsucg*xuBgdomuvB¬u<svusucg=vsucgug=x
147 df-eu ∃!xuBgdomuvB¬u<svusucg=vsucgug=xxuBgdomuvB¬u<svusucg=vsucgug=x*xuBgdomuvB¬u<svusucg=vsucgug=x
148 143 146 147 sylanbrc ¬xByB¬y<sxBNoBVuBgdomuvB¬u<svusucg=vsucg∃!xuBgdomuvB¬u<svusucg=vsucgug=x
149 vex zV
150 eqeq2 x=zug=xug=z
151 150 3anbi3d x=zgdomuvB¬u<svusucg=vsucgug=xgdomuvB¬u<svusucg=vsucgug=z
152 151 rexbidv x=zuBgdomuvB¬u<svusucg=vsucgug=xuBgdomuvB¬u<svusucg=vsucgug=z
153 152 iota2 zV∃!xuBgdomuvB¬u<svusucg=vsucgug=xuBgdomuvB¬u<svusucg=vsucgug=zιx|uBgdomuvB¬u<svusucg=vsucgug=x=z
154 149 153 mpan ∃!xuBgdomuvB¬u<svusucg=vsucgug=xuBgdomuvB¬u<svusucg=vsucgug=zιx|uBgdomuvB¬u<svusucg=vsucgug=x=z
155 148 154 syl ¬xByB¬y<sxBNoBVuBgdomuvB¬u<svusucg=vsucguBgdomuvB¬u<svusucg=vsucgug=zιx|uBgdomuvB¬u<svusucg=vsucgug=x=z
156 eqcom ιx|uBgdomuvB¬u<svusucg=vsucgug=x=zz=ιx|uBgdomuvB¬u<svusucg=vsucgug=x
157 155 156 bitrdi ¬xByB¬y<sxBNoBVuBgdomuvB¬u<svusucg=vsucguBgdomuvB¬u<svusucg=vsucgug=zz=ιx|uBgdomuvB¬u<svusucg=vsucgug=x
158 simprr3 BNouBgdomuvB¬u<svusucg=vsucgug=zug=z
159 simpl BNouBgdomuvB¬u<svusucg=vsucgug=zBNo
160 simprl BNouBgdomuvB¬u<svusucg=vsucgug=zuB
161 159 160 sseldd BNouBgdomuvB¬u<svusucg=vsucgug=zuNo
162 norn uNoranu1𝑜2𝑜
163 161 162 syl BNouBgdomuvB¬u<svusucg=vsucgug=zranu1𝑜2𝑜
164 nofun uNoFunu
165 161 164 syl BNouBgdomuvB¬u<svusucg=vsucgug=zFunu
166 simprr1 BNouBgdomuvB¬u<svusucg=vsucgug=zgdomu
167 fvelrn Funugdomuugranu
168 165 166 167 syl2anc BNouBgdomuvB¬u<svusucg=vsucgug=zugranu
169 163 168 sseldd BNouBgdomuvB¬u<svusucg=vsucgug=zug1𝑜2𝑜
170 158 169 eqeltrrd BNouBgdomuvB¬u<svusucg=vsucgug=zz1𝑜2𝑜
171 170 rexlimdvaa BNouBgdomuvB¬u<svusucg=vsucgug=zz1𝑜2𝑜
172 171 ad2antrl ¬xByB¬y<sxBNoBVuBgdomuvB¬u<svusucg=vsucgug=zz1𝑜2𝑜
173 172 adantr ¬xByB¬y<sxBNoBVuBgdomuvB¬u<svusucg=vsucguBgdomuvB¬u<svusucg=vsucgug=zz1𝑜2𝑜
174 157 173 sylbird ¬xByB¬y<sxBNoBVuBgdomuvB¬u<svusucg=vsucgz=ιx|uBgdomuvB¬u<svusucg=vsucgug=xz1𝑜2𝑜
175 174 expimpd ¬xByB¬y<sxBNoBVuBgdomuvB¬u<svusucg=vsucgz=ιx|uBgdomuvB¬u<svusucg=vsucgug=xz1𝑜2𝑜
176 175 exlimdv ¬xByB¬y<sxBNoBVguBgdomuvB¬u<svusucg=vsucgz=ιx|uBgdomuvB¬u<svusucg=vsucgug=xz1𝑜2𝑜
177 133 176 biimtrid ¬xByB¬y<sxBNoBVgy|uBydomuvB¬u<svusucy=vsucyz=ιx|uBgdomuvB¬u<svusucg=vsucgug=xz1𝑜2𝑜
178 177 abssdv ¬xByB¬y<sxBNoBVz|gy|uBydomuvB¬u<svusucy=vsucyz=ιx|uBgdomuvB¬u<svusucg=vsucgug=x1𝑜2𝑜
179 123 178 eqsstrid ¬xByB¬y<sxBNoBVrangy|uBydomuvB¬u<svusucy=vsucyιx|uBgdomuvB¬u<svusucg=vsucgug=x1𝑜2𝑜
180 elno2 gy|uBydomuvB¬u<svusucy=vsucyιx|uBgdomuvB¬u<svusucg=vsucgug=xNoFungy|uBydomuvB¬u<svusucy=vsucyιx|uBgdomuvB¬u<svusucg=vsucgug=xdomgy|uBydomuvB¬u<svusucy=vsucyιx|uBgdomuvB¬u<svusucg=vsucgug=xOnrangy|uBydomuvB¬u<svusucy=vsucyιx|uBgdomuvB¬u<svusucg=vsucgug=x1𝑜2𝑜
181 21 122 179 180 syl3anbrc ¬xByB¬y<sxBNoBVgy|uBydomuvB¬u<svusucy=vsucyιx|uBgdomuvB¬u<svusucg=vsucgug=xNo
182 19 181 eqeltrd ¬xByB¬y<sxBNoBVifxByB¬y<sxιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜gy|uBydomuvB¬u<svusucy=vsucyιx|uBgdomuvB¬u<svusucg=vsucgug=xNo
183 17 182 pm2.61ian BNoBVifxByB¬y<sxιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜gy|uBydomuvB¬u<svusucy=vsucyιx|uBgdomuvB¬u<svusucg=vsucgug=xNo
184 1 183 eqeltrid BNoBVTNo