Metamath Proof Explorer


Theorem pige3ALT

Description: Alternate proof of pige3 . This proof is based on the geometric observation that a hexagon of unit side length has perimeter 6, which is less than the unit-radius circumcircle, of perimeter 2pi . We translate this to algebra by looking at the function e ^ (i x ) as x goes from 0 to pi / 3 ; it moves at unit speed and travels distance 1 , hence 1 <_ _pi / 3 . (Contributed by Mario Carneiro, 21-May-2016) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion pige3ALT 3π

Proof

Step Hyp Ref Expression
1 3cn 3
2 1 mullidi 13=3
3 tru
4 0xr 0*
5 pirp π+
6 3rp 3+
7 rpdivcl π+3+π3+
8 5 6 7 mp2an π3+
9 rpxr π3+π3*
10 8 9 ax-mp π3*
11 rpge0 π3+0π3
12 8 11 ax-mp 0π3
13 lbicc2 0*π3*0π300π3
14 4 10 12 13 mp3an 00π3
15 ubicc2 0*π3*0π3π30π3
16 4 10 12 15 mp3an π30π3
17 14 16 pm3.2i 00π3π30π3
18 0re 0
19 18 a1i 0
20 pire π
21 3re 3
22 3ne0 30
23 20 21 22 redivcli π3
24 23 a1i π3
25 efcn exp:cn
26 25 a1i exp:cn
27 iccssre 0π30π3
28 18 23 27 mp2an 0π3
29 ax-resscn
30 28 29 sstri 0π3
31 resmpt 0π3xix0π3=x0π3ix
32 30 31 mp1i xix0π3=x0π3ix
33 ssidd
34 ax-icn i
35 simpr xx
36 mulcl ixix
37 34 35 36 sylancr xix
38 37 fmpttd xix:
39 cnelprrecn
40 39 a1i
41 ax-1cn 1
42 41 a1i x1
43 40 dvmptid dxxdx=x1
44 34 a1i i
45 40 35 42 43 44 dvmptcmul dxixdx=xi1
46 34 mulridi i1=i
47 46 mpteq2i xi1=xi
48 45 47 eqtrdi dxixdx=xi
49 48 dmeqd domdxixdx=domxi
50 34 elexi iV
51 eqid xi=xi
52 50 51 dmmpti domxi=
53 49 52 eqtrdi domdxixdx=
54 dvcn xix:domdxixdx=xix:cn
55 33 38 33 53 54 syl31anc xix:cn
56 rescncf 0π3xix:cnxix0π3:0π3cn
57 30 55 56 mpsyl xix0π3:0π3cn
58 32 57 eqeltrrd x0π3ix:0π3cn
59 26 58 cncfmpt1f x0π3eix:0π3cn
60 reelprrecn
61 60 a1i
62 recn xx
63 efcl ixeix
64 37 63 syl xeix
65 62 64 sylan2 xeix
66 mulcl eixieixi
67 64 34 66 sylancl xeixi
68 62 67 sylan2 xeixi
69 eqid TopOpenfld=TopOpenfld
70 69 cnfldtopon TopOpenfldTopOn
71 toponmax TopOpenfldTopOnTopOpenfld
72 70 71 mp1i TopOpenfld
73 29 a1i
74 df-ss =
75 73 74 sylib =
76 34 a1i xi
77 efcl yey
78 77 adantl yey
79 dvef Dexp=exp
80 eff exp:
81 80 a1i exp:
82 81 feqmptd exp=yey
83 82 oveq2d Dexp=dyeydy
84 79 83 82 3eqtr3a dyeydy=yey
85 fveq2 y=ixey=eix
86 40 40 37 76 78 78 48 84 85 85 dvmptco dxeixdx=xeixi
87 69 61 72 75 64 67 86 dvmptres3 dxeixdx=xeixi
88 28 a1i 0π3
89 69 tgioo2 topGenran.=TopOpenfld𝑡
90 iccntr 0π3inttopGenran.0π3=0π3
91 18 24 90 sylancr inttopGenran.0π3=0π3
92 61 65 68 87 88 89 69 91 dvmptres2 dx0π3eixdx=x0π3eixi
93 92 dmeqd domdx0π3eixdx=domx0π3eixi
94 ovex eixiV
95 eqid x0π3eixi=x0π3eixi
96 94 95 dmmpti domx0π3eixi=0π3
97 93 96 eqtrdi domdx0π3eixdx=0π3
98 1re 1
99 98 a1i 1
100 92 fveq1d dx0π3eixdxy=x0π3eixiy
101 oveq2 x=yix=iy
102 101 fveq2d x=yeix=eiy
103 102 oveq1d x=yeixi=eiyi
104 103 95 94 fvmpt3i y0π3x0π3eixiy=eiyi
105 100 104 sylan9eq y0π3dx0π3eixdxy=eiyi
106 105 fveq2d y0π3dx0π3eixdxy=eiyi
107 ioossre 0π3
108 107 a1i 0π3
109 108 sselda y0π3y
110 109 recnd y0π3y
111 mulcl iyiy
112 34 110 111 sylancr y0π3iy
113 efcl iyeiy
114 112 113 syl y0π3eiy
115 absmul eiyieiyi=eiyi
116 114 34 115 sylancl y0π3eiyi=eiyi
117 absefi yeiy=1
118 109 117 syl y0π3eiy=1
119 absi i=1
120 119 a1i y0π3i=1
121 118 120 oveq12d y0π3eiyi=11
122 41 mulridi 11=1
123 121 122 eqtrdi y0π3eiyi=1
124 106 116 123 3eqtrd y0π3dx0π3eixdxy=1
125 1le1 11
126 124 125 eqbrtrdi y0π3dx0π3eixdxy1
127 19 24 59 97 99 126 dvlip 00π3π30π3x0π3eix0x0π3eixπ310π3
128 3 17 127 mp2an x0π3eix0x0π3eixπ310π3
129 oveq2 x=0ix=i0
130 it0e0 i0=0
131 129 130 eqtrdi x=0ix=0
132 131 fveq2d x=0eix=e0
133 ef0 e0=1
134 132 133 eqtrdi x=0eix=1
135 eqid x0π3eix=x0π3eix
136 fvex eixV
137 134 135 136 fvmpt3i 00π3x0π3eix0=1
138 14 137 ax-mp x0π3eix0=1
139 oveq2 x=π3ix=iπ3
140 139 fveq2d x=π3eix=eiπ3
141 140 135 136 fvmpt3i π30π3x0π3eixπ3=eiπ3
142 16 141 ax-mp x0π3eixπ3=eiπ3
143 138 142 oveq12i x0π3eix0x0π3eixπ3=1eiπ3
144 23 recni π3
145 34 144 mulcli iπ3
146 efcl iπ3eiπ3
147 145 146 ax-mp eiπ3
148 negicn i
149 148 144 mulcli iπ3
150 efcl iπ3eiπ3
151 149 150 ax-mp eiπ3
152 cosval π3cosπ3=eiπ3+eiπ32
153 144 152 ax-mp cosπ3=eiπ3+eiπ32
154 sincos3rdpi sinπ3=32cosπ3=12
155 154 simpri cosπ3=12
156 153 155 eqtr3i eiπ3+eiπ32=12
157 147 151 addcli eiπ3+eiπ3
158 2cn 2
159 2ne0 20
160 157 41 158 159 div11i eiπ3+eiπ32=12eiπ3+eiπ3=1
161 156 160 mpbi eiπ3+eiπ3=1
162 41 147 151 161 subaddrii 1eiπ3=eiπ3
163 mulneg12 iπ3iπ3=iπ3
164 34 144 163 mp2an iπ3=iπ3
165 164 fveq2i eiπ3=eiπ3
166 143 162 165 3eqtri x0π3eix0x0π3eixπ3=eiπ3
167 166 fveq2i x0π3eix0x0π3eixπ3=eiπ3
168 144 absnegi π3=π3
169 df-neg π3=0π3
170 169 fveq2i π3=0π3
171 168 170 eqtr3i π3=0π3
172 rprege0 π3+π30π3
173 absid π30π3π3=π3
174 8 172 173 mp2b π3=π3
175 171 174 eqtr3i 0π3=π3
176 175 oveq2i 10π3=1π3
177 128 167 176 3brtr3i eiπ31π3
178 23 renegcli π3
179 absefi π3eiπ3=1
180 178 179 ax-mp eiπ3=1
181 144 mullidi 1π3=π3
182 177 180 181 3brtr3i 1π3
183 3pos 0<3
184 21 183 pm3.2i 30<3
185 lemuldiv 1π30<313π1π3
186 98 20 184 185 mp3an 13π1π3
187 182 186 mpbir 13π
188 2 187 eqbrtrri 3π