| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1mulgsum.p |
|
| 2 |
|
ply1mulgsum.b |
|
| 3 |
|
ply1mulgsum.a |
|
| 4 |
|
ply1mulgsum.c |
|
| 5 |
|
ply1mulgsum.x |
|
| 6 |
|
ply1mulgsum.pm |
|
| 7 |
|
ply1mulgsum.sm |
|
| 8 |
|
ply1mulgsum.rm |
|
| 9 |
|
ply1mulgsum.m |
|
| 10 |
|
ply1mulgsum.e |
|
| 11 |
1 2 3 4 5 6 7 8 9 10
|
ply1mulgsumlem1 |
|
| 12 |
|
2nn0 |
|
| 13 |
12
|
a1i |
|
| 14 |
|
id |
|
| 15 |
13 14
|
nn0mulcld |
|
| 16 |
15
|
ad2antrr |
|
| 17 |
|
breq1 |
|
| 18 |
17
|
imbi1d |
|
| 19 |
18
|
ralbidv |
|
| 20 |
19
|
adantl |
|
| 21 |
|
2re |
|
| 22 |
21
|
a1i |
|
| 23 |
|
nn0re |
|
| 24 |
22 23
|
remulcld |
|
| 25 |
24
|
ad2antrr |
|
| 26 |
|
nn0re |
|
| 27 |
26
|
adantl |
|
| 28 |
27
|
adantr |
|
| 29 |
|
elfznn0 |
|
| 30 |
|
nn0re |
|
| 31 |
29 30
|
syl |
|
| 32 |
31
|
adantl |
|
| 33 |
25 28 32
|
ltsub1d |
|
| 34 |
23
|
ad2antrr |
|
| 35 |
32 34 25
|
lesub2d |
|
| 36 |
35
|
adantr |
|
| 37 |
24 23
|
resubcld |
|
| 38 |
37
|
ad2antrr |
|
| 39 |
24
|
adantr |
|
| 40 |
|
resubcl |
|
| 41 |
39 31 40
|
syl2an |
|
| 42 |
|
resubcl |
|
| 43 |
27 31 42
|
syl2an |
|
| 44 |
|
lelttr |
|
| 45 |
38 41 43 44
|
syl3anc |
|
| 46 |
|
nn0cn |
|
| 47 |
|
2txmxeqx |
|
| 48 |
46 47
|
syl |
|
| 49 |
48
|
ad2antrr |
|
| 50 |
49
|
breq1d |
|
| 51 |
45 50
|
sylibd |
|
| 52 |
51
|
expcomd |
|
| 53 |
52
|
imp |
|
| 54 |
36 53
|
sylbid |
|
| 55 |
54
|
ex |
|
| 56 |
33 55
|
sylbid |
|
| 57 |
56
|
ex |
|
| 58 |
57
|
com23 |
|
| 59 |
58
|
ex |
|
| 60 |
59
|
ad2antrr |
|
| 61 |
60
|
imp41 |
|
| 62 |
61
|
impcom |
|
| 63 |
|
fznn0sub2 |
|
| 64 |
|
elfznn0 |
|
| 65 |
|
breq2 |
|
| 66 |
|
fveqeq2 |
|
| 67 |
|
fveqeq2 |
|
| 68 |
66 67
|
anbi12d |
|
| 69 |
65 68
|
imbi12d |
|
| 70 |
69
|
rspcva |
|
| 71 |
|
simpr |
|
| 72 |
70 71
|
syl6 |
|
| 73 |
72
|
ex |
|
| 74 |
63 64 73
|
3syl |
|
| 75 |
74
|
com12 |
|
| 76 |
75
|
ad4antlr |
|
| 77 |
76
|
imp |
|
| 78 |
77
|
adantl |
|
| 79 |
62 78
|
mpd |
|
| 80 |
79
|
oveq2d |
|
| 81 |
|
simplr1 |
|
| 82 |
81
|
ad2antrr |
|
| 83 |
82
|
adantl |
|
| 84 |
|
simplr2 |
|
| 85 |
84
|
adantr |
|
| 86 |
85 29
|
anim12i |
|
| 87 |
86
|
adantl |
|
| 88 |
|
eqid |
|
| 89 |
3 2 1 88
|
coe1fvalcl |
|
| 90 |
87 89
|
syl |
|
| 91 |
|
eqid |
|
| 92 |
88 8 91
|
ringrz |
|
| 93 |
83 90 92
|
syl2anc |
|
| 94 |
80 93
|
eqtrd |
|
| 95 |
|
ltnle |
|
| 96 |
23 30 95
|
syl2an |
|
| 97 |
96
|
bicomd |
|
| 98 |
97
|
expcom |
|
| 99 |
98 29
|
syl11 |
|
| 100 |
99
|
ad4antr |
|
| 101 |
100
|
imp |
|
| 102 |
|
breq2 |
|
| 103 |
|
fveqeq2 |
|
| 104 |
|
fveqeq2 |
|
| 105 |
103 104
|
anbi12d |
|
| 106 |
102 105
|
imbi12d |
|
| 107 |
106
|
rspcva |
|
| 108 |
|
simpl |
|
| 109 |
107 108
|
syl6 |
|
| 110 |
109
|
ex |
|
| 111 |
110 29
|
syl11 |
|
| 112 |
111
|
ad4antlr |
|
| 113 |
112
|
imp |
|
| 114 |
101 113
|
sylbid |
|
| 115 |
114
|
impcom |
|
| 116 |
115
|
oveq1d |
|
| 117 |
82
|
adantl |
|
| 118 |
|
simplr3 |
|
| 119 |
118
|
adantr |
|
| 120 |
|
fznn0sub |
|
| 121 |
119 120
|
anim12i |
|
| 122 |
121
|
adantl |
|
| 123 |
4 2 1 88
|
coe1fvalcl |
|
| 124 |
122 123
|
syl |
|
| 125 |
88 8 91
|
ringlz |
|
| 126 |
117 124 125
|
syl2anc |
|
| 127 |
116 126
|
eqtrd |
|
| 128 |
94 127
|
pm2.61ian |
|
| 129 |
128
|
mpteq2dva |
|
| 130 |
129
|
oveq2d |
|
| 131 |
|
ringmnd |
|
| 132 |
131
|
3ad2ant1 |
|
| 133 |
|
ovex |
|
| 134 |
132 133
|
jctir |
|
| 135 |
134
|
ad3antlr |
|
| 136 |
91
|
gsumz |
|
| 137 |
135 136
|
syl |
|
| 138 |
130 137
|
eqtrd |
|
| 139 |
138
|
ex |
|
| 140 |
139
|
ralrimiva |
|
| 141 |
16 20 140
|
rspcedvd |
|
| 142 |
141
|
ex |
|
| 143 |
142
|
rexlimiva |
|
| 144 |
11 143
|
mpcom |
|