Metamath Proof Explorer


Theorem ply1mulgsumlem2

Description: Lemma 2 for ply1mulgsum . (Contributed by AV, 19-Oct-2019)

Ref Expression
Hypotheses ply1mulgsum.p P=Poly1R
ply1mulgsum.b B=BaseP
ply1mulgsum.a A=coe1K
ply1mulgsum.c C=coe1L
ply1mulgsum.x X=var1R
ply1mulgsum.pm ×˙=P
ply1mulgsum.sm ·˙=P
ply1mulgsum.rm ˙=R
ply1mulgsum.m M=mulGrpP
ply1mulgsum.e ×˙=M
Assertion ply1mulgsumlem2 RRingKBLBs0n0s<nRl=0nAl˙Cnl=0R

Proof

Step Hyp Ref Expression
1 ply1mulgsum.p P=Poly1R
2 ply1mulgsum.b B=BaseP
3 ply1mulgsum.a A=coe1K
4 ply1mulgsum.c C=coe1L
5 ply1mulgsum.x X=var1R
6 ply1mulgsum.pm ×˙=P
7 ply1mulgsum.sm ·˙=P
8 ply1mulgsum.rm ˙=R
9 ply1mulgsum.m M=mulGrpP
10 ply1mulgsum.e ×˙=M
11 1 2 3 4 5 6 7 8 9 10 ply1mulgsumlem1 RRingKBLBz0x0z<xAx=0RCx=0R
12 2nn0 20
13 12 a1i z020
14 id z0z0
15 13 14 nn0mulcld z02z0
16 15 ad2antrr z0x0z<xAx=0RCx=0RRRingKBLB2z0
17 breq1 s=2zs<n2z<n
18 17 imbi1d s=2zs<nRl=0nAl˙Cnl=0R2z<nRl=0nAl˙Cnl=0R
19 18 ralbidv s=2zn0s<nRl=0nAl˙Cnl=0Rn02z<nRl=0nAl˙Cnl=0R
20 19 adantl z0x0z<xAx=0RCx=0RRRingKBLBs=2zn0s<nRl=0nAl˙Cnl=0Rn02z<nRl=0nAl˙Cnl=0R
21 2re 2
22 21 a1i z02
23 nn0re z0z
24 22 23 remulcld z02z
25 24 ad2antrr z0n0l0n2z
26 nn0re n0n
27 26 adantl z0n0n
28 27 adantr z0n0l0nn
29 elfznn0 l0nl0
30 nn0re l0l
31 29 30 syl l0nl
32 31 adantl z0n0l0nl
33 25 28 32 ltsub1d z0n0l0n2z<n2zl<nl
34 23 ad2antrr z0n0l0nz
35 32 34 25 lesub2d z0n0l0nlz2zz2zl
36 35 adantr z0n0l0n2zl<nllz2zz2zl
37 24 23 resubcld z02zz
38 37 ad2antrr z0n0l0n2zz
39 24 adantr z0n02z
40 resubcl 2zl2zl
41 39 31 40 syl2an z0n0l0n2zl
42 resubcl nlnl
43 27 31 42 syl2an z0n0l0nnl
44 lelttr 2zz2zlnl2zz2zl2zl<nl2zz<nl
45 38 41 43 44 syl3anc z0n0l0n2zz2zl2zl<nl2zz<nl
46 nn0cn z0z
47 2txmxeqx z2zz=z
48 46 47 syl z02zz=z
49 48 ad2antrr z0n0l0n2zz=z
50 49 breq1d z0n0l0n2zz<nlz<nl
51 45 50 sylibd z0n0l0n2zz2zl2zl<nlz<nl
52 51 expcomd z0n0l0n2zl<nl2zz2zlz<nl
53 52 imp z0n0l0n2zl<nl2zz2zlz<nl
54 36 53 sylbid z0n0l0n2zl<nllzz<nl
55 54 ex z0n0l0n2zl<nllzz<nl
56 33 55 sylbid z0n0l0n2z<nlzz<nl
57 56 ex z0n0l0n2z<nlzz<nl
58 57 com23 z0n02z<nl0nlzz<nl
59 58 ex z0n02z<nl0nlzz<nl
60 59 ad2antrr z0x0z<xAx=0RCx=0RRRingKBLBn02z<nl0nlzz<nl
61 60 imp41 z0x0z<xAx=0RCx=0RRRingKBLBn02z<nl0nlzz<nl
62 61 impcom lzz0x0z<xAx=0RCx=0RRRingKBLBn02z<nl0nz<nl
63 fznn0sub2 l0nnl0n
64 elfznn0 nl0nnl0
65 breq2 x=nlz<xz<nl
66 fveqeq2 x=nlAx=0RAnl=0R
67 fveqeq2 x=nlCx=0RCnl=0R
68 66 67 anbi12d x=nlAx=0RCx=0RAnl=0RCnl=0R
69 65 68 imbi12d x=nlz<xAx=0RCx=0Rz<nlAnl=0RCnl=0R
70 69 rspcva nl0x0z<xAx=0RCx=0Rz<nlAnl=0RCnl=0R
71 simpr Anl=0RCnl=0RCnl=0R
72 70 71 syl6 nl0x0z<xAx=0RCx=0Rz<nlCnl=0R
73 72 ex nl0x0z<xAx=0RCx=0Rz<nlCnl=0R
74 63 64 73 3syl l0nx0z<xAx=0RCx=0Rz<nlCnl=0R
75 74 com12 x0z<xAx=0RCx=0Rl0nz<nlCnl=0R
76 75 ad4antlr z0x0z<xAx=0RCx=0RRRingKBLBn02z<nl0nz<nlCnl=0R
77 76 imp z0x0z<xAx=0RCx=0RRRingKBLBn02z<nl0nz<nlCnl=0R
78 77 adantl lzz0x0z<xAx=0RCx=0RRRingKBLBn02z<nl0nz<nlCnl=0R
79 62 78 mpd lzz0x0z<xAx=0RCx=0RRRingKBLBn02z<nl0nCnl=0R
80 79 oveq2d lzz0x0z<xAx=0RCx=0RRRingKBLBn02z<nl0nAl˙Cnl=Al˙0R
81 simplr1 z0x0z<xAx=0RCx=0RRRingKBLBn0RRing
82 81 ad2antrr z0x0z<xAx=0RCx=0RRRingKBLBn02z<nl0nRRing
83 82 adantl lzz0x0z<xAx=0RCx=0RRRingKBLBn02z<nl0nRRing
84 simplr2 z0x0z<xAx=0RCx=0RRRingKBLBn0KB
85 84 adantr z0x0z<xAx=0RCx=0RRRingKBLBn02z<nKB
86 85 29 anim12i z0x0z<xAx=0RCx=0RRRingKBLBn02z<nl0nKBl0
87 86 adantl lzz0x0z<xAx=0RCx=0RRRingKBLBn02z<nl0nKBl0
88 eqid BaseR=BaseR
89 3 2 1 88 coe1fvalcl KBl0AlBaseR
90 87 89 syl lzz0x0z<xAx=0RCx=0RRRingKBLBn02z<nl0nAlBaseR
91 eqid 0R=0R
92 88 8 91 ringrz RRingAlBaseRAl˙0R=0R
93 83 90 92 syl2anc lzz0x0z<xAx=0RCx=0RRRingKBLBn02z<nl0nAl˙0R=0R
94 80 93 eqtrd lzz0x0z<xAx=0RCx=0RRRingKBLBn02z<nl0nAl˙Cnl=0R
95 ltnle zlz<l¬lz
96 23 30 95 syl2an z0l0z<l¬lz
97 96 bicomd z0l0¬lzz<l
98 97 expcom l0z0¬lzz<l
99 98 29 syl11 z0l0n¬lzz<l
100 99 ad4antr z0x0z<xAx=0RCx=0RRRingKBLBn02z<nl0n¬lzz<l
101 100 imp z0x0z<xAx=0RCx=0RRRingKBLBn02z<nl0n¬lzz<l
102 breq2 x=lz<xz<l
103 fveqeq2 x=lAx=0RAl=0R
104 fveqeq2 x=lCx=0RCl=0R
105 103 104 anbi12d x=lAx=0RCx=0RAl=0RCl=0R
106 102 105 imbi12d x=lz<xAx=0RCx=0Rz<lAl=0RCl=0R
107 106 rspcva l0x0z<xAx=0RCx=0Rz<lAl=0RCl=0R
108 simpl Al=0RCl=0RAl=0R
109 107 108 syl6 l0x0z<xAx=0RCx=0Rz<lAl=0R
110 109 ex l0x0z<xAx=0RCx=0Rz<lAl=0R
111 110 29 syl11 x0z<xAx=0RCx=0Rl0nz<lAl=0R
112 111 ad4antlr z0x0z<xAx=0RCx=0RRRingKBLBn02z<nl0nz<lAl=0R
113 112 imp z0x0z<xAx=0RCx=0RRRingKBLBn02z<nl0nz<lAl=0R
114 101 113 sylbid z0x0z<xAx=0RCx=0RRRingKBLBn02z<nl0n¬lzAl=0R
115 114 impcom ¬lzz0x0z<xAx=0RCx=0RRRingKBLBn02z<nl0nAl=0R
116 115 oveq1d ¬lzz0x0z<xAx=0RCx=0RRRingKBLBn02z<nl0nAl˙Cnl=0R˙Cnl
117 82 adantl ¬lzz0x0z<xAx=0RCx=0RRRingKBLBn02z<nl0nRRing
118 simplr3 z0x0z<xAx=0RCx=0RRRingKBLBn0LB
119 118 adantr z0x0z<xAx=0RCx=0RRRingKBLBn02z<nLB
120 fznn0sub l0nnl0
121 119 120 anim12i z0x0z<xAx=0RCx=0RRRingKBLBn02z<nl0nLBnl0
122 121 adantl ¬lzz0x0z<xAx=0RCx=0RRRingKBLBn02z<nl0nLBnl0
123 4 2 1 88 coe1fvalcl LBnl0CnlBaseR
124 122 123 syl ¬lzz0x0z<xAx=0RCx=0RRRingKBLBn02z<nl0nCnlBaseR
125 88 8 91 ringlz RRingCnlBaseR0R˙Cnl=0R
126 117 124 125 syl2anc ¬lzz0x0z<xAx=0RCx=0RRRingKBLBn02z<nl0n0R˙Cnl=0R
127 116 126 eqtrd ¬lzz0x0z<xAx=0RCx=0RRRingKBLBn02z<nl0nAl˙Cnl=0R
128 94 127 pm2.61ian z0x0z<xAx=0RCx=0RRRingKBLBn02z<nl0nAl˙Cnl=0R
129 128 mpteq2dva z0x0z<xAx=0RCx=0RRRingKBLBn02z<nl0nAl˙Cnl=l0n0R
130 129 oveq2d z0x0z<xAx=0RCx=0RRRingKBLBn02z<nRl=0nAl˙Cnl=Rl=0n0R
131 ringmnd RRingRMnd
132 131 3ad2ant1 RRingKBLBRMnd
133 ovex 0nV
134 132 133 jctir RRingKBLBRMnd0nV
135 134 ad3antlr z0x0z<xAx=0RCx=0RRRingKBLBn02z<nRMnd0nV
136 91 gsumz RMnd0nVRl=0n0R=0R
137 135 136 syl z0x0z<xAx=0RCx=0RRRingKBLBn02z<nRl=0n0R=0R
138 130 137 eqtrd z0x0z<xAx=0RCx=0RRRingKBLBn02z<nRl=0nAl˙Cnl=0R
139 138 ex z0x0z<xAx=0RCx=0RRRingKBLBn02z<nRl=0nAl˙Cnl=0R
140 139 ralrimiva z0x0z<xAx=0RCx=0RRRingKBLBn02z<nRl=0nAl˙Cnl=0R
141 16 20 140 rspcedvd z0x0z<xAx=0RCx=0RRRingKBLBs0n0s<nRl=0nAl˙Cnl=0R
142 141 ex z0x0z<xAx=0RCx=0RRRingKBLBs0n0s<nRl=0nAl˙Cnl=0R
143 142 rexlimiva z0x0z<xAx=0RCx=0RRRingKBLBs0n0s<nRl=0nAl˙Cnl=0R
144 11 143 mpcom RRingKBLBs0n0s<nRl=0nAl˙Cnl=0R