Metamath Proof Explorer


Theorem plymullem1

Description: Derive the coefficient function for the product of two polynomials. (Contributed by Mario Carneiro, 23-Jul-2014)

Ref Expression
Hypotheses plyaddlem.1 φFPolyS
plyaddlem.2 φGPolyS
plyaddlem.m φM0
plyaddlem.n φN0
plyaddlem.a φA:0
plyaddlem.b φB:0
plyaddlem.a2 φAM+1=0
plyaddlem.b2 φBN+1=0
plyaddlem.f φF=zk=0MAkzk
plyaddlem.g φG=zk=0NBkzk
Assertion plymullem1 φF×fG=zn=0M+Nk=0nAkBnkzn

Proof

Step Hyp Ref Expression
1 plyaddlem.1 φFPolyS
2 plyaddlem.2 φGPolyS
3 plyaddlem.m φM0
4 plyaddlem.n φN0
5 plyaddlem.a φA:0
6 plyaddlem.b φB:0
7 plyaddlem.a2 φAM+1=0
8 plyaddlem.b2 φBN+1=0
9 plyaddlem.f φF=zk=0MAkzk
10 plyaddlem.g φG=zk=0NBkzk
11 cnex V
12 11 a1i φV
13 sumex k=0MAkzkV
14 13 a1i φzk=0MAkzkV
15 sumex k=0NBkzkV
16 15 a1i φzk=0NBkzkV
17 12 14 16 9 10 offval2 φF×fG=zk=0MAkzkk=0NBkzk
18 fveq2 m=nBm=Bn
19 oveq2 m=nzm=zn
20 18 19 oveq12d m=nBmzm=Bnzn
21 20 oveq2d m=nAkzkBmzm=AkzkBnzn
22 fveq2 m=nkBm=Bnk
23 oveq2 m=nkzm=znk
24 22 23 oveq12d m=nkBmzm=Bnkznk
25 24 oveq2d m=nkAkzkBmzm=AkzkBnkznk
26 elfznn0 k0M+Nk0
27 5 adantr φzA:0
28 27 ffvelcdmda φzk0Ak
29 expcl zk0zk
30 29 adantll φzk0zk
31 28 30 mulcld φzk0Akzk
32 26 31 sylan2 φzk0M+NAkzk
33 elfznn0 n0M+N-kn0
34 6 adantr φzB:0
35 34 ffvelcdmda φzn0Bn
36 expcl zn0zn
37 36 adantll φzn0zn
38 35 37 mulcld φzn0Bnzn
39 33 38 sylan2 φzn0M+N-kBnzn
40 32 39 anim12dan φzk0M+Nn0M+N-kAkzkBnzn
41 mulcl AkzkBnznAkzkBnzn
42 40 41 syl φzk0M+Nn0M+N-kAkzkBnzn
43 21 25 42 fsum0diag2 φzk=0M+Nn=0M+N-kAkzkBnzn=n=0M+Nk=0nAkzkBnkznk
44 3 nn0cnd φM
45 44 ad2antrr φzk0MM
46 4 nn0cnd φN
47 46 ad2antrr φzk0MN
48 elfznn0 k0Mk0
49 48 adantl φzk0Mk0
50 49 nn0cnd φzk0Mk
51 45 47 50 addsubd φzk0MM+N-k=M-k+N
52 fznn0sub k0MMk0
53 52 adantl φzk0MMk0
54 nn0uz 0=0
55 53 54 eleqtrdi φzk0MMk0
56 4 nn0zd φN
57 56 ad2antrr φzk0MN
58 eluzadd Mk0NM-k+N0+N
59 55 57 58 syl2anc φzk0MM-k+N0+N
60 51 59 eqeltrd φzk0MM+N-k0+N
61 47 addlidd φzk0M0+N=N
62 61 fveq2d φzk0M0+N=N
63 60 62 eleqtrd φzk0MM+N-kN
64 fzss2 M+N-kN0N0M+N-k
65 63 64 syl φzk0M0N0M+N-k
66 48 31 sylan2 φzk0MAkzk
67 66 adantr φzk0Mn0NAkzk
68 elfznn0 n0Nn0
69 68 38 sylan2 φzn0NBnzn
70 69 adantlr φzk0Mn0NBnzn
71 67 70 mulcld φzk0Mn0NAkzkBnzn
72 eldifn n0M+N-k0N¬n0N
73 72 adantl φzk0Mn0M+N-k0N¬n0N
74 eldifi n0M+N-k0Nn0M+N-k
75 74 33 syl n0M+N-k0Nn0
76 75 adantl φzk0Mn0M+N-k0Nn0
77 peano2nn0 N0N+10
78 4 77 syl φN+10
79 78 54 eleqtrdi φN+10
80 uzsplit N+100=0N+1-1N+1
81 79 80 syl φ0=0N+1-1N+1
82 54 81 eqtrid φ0=0N+1-1N+1
83 ax-1cn 1
84 pncan N1N+1-1=N
85 46 83 84 sylancl φN+1-1=N
86 85 oveq2d φ0N+1-1=0N
87 86 uneq1d φ0N+1-1N+1=0NN+1
88 82 87 eqtrd φ0=0NN+1
89 88 ad3antrrr φzk0Mn0M+N-k0N0=0NN+1
90 76 89 eleqtrd φzk0Mn0M+N-k0Nn0NN+1
91 elun n0NN+1n0NnN+1
92 90 91 sylib φzk0Mn0M+N-k0Nn0NnN+1
93 92 ord φzk0Mn0M+N-k0N¬n0NnN+1
94 73 93 mpd φzk0Mn0M+N-k0NnN+1
95 6 ffund φFunB
96 ssun2 N+10N+1-1N+1
97 96 82 sseqtrrid φN+10
98 6 fdmd φdomB=0
99 97 98 sseqtrrd φN+1domB
100 funfvima2 FunBN+1domBnN+1BnBN+1
101 95 99 100 syl2anc φnN+1BnBN+1
102 101 ad3antrrr φzk0Mn0M+N-k0NnN+1BnBN+1
103 94 102 mpd φzk0Mn0M+N-k0NBnBN+1
104 8 ad3antrrr φzk0Mn0M+N-k0NBN+1=0
105 103 104 eleqtrd φzk0Mn0M+N-k0NBn0
106 elsni Bn0Bn=0
107 105 106 syl φzk0Mn0M+N-k0NBn=0
108 107 oveq1d φzk0Mn0M+N-k0NBnzn=0zn
109 simplr φzk0Mz
110 109 75 36 syl2an φzk0Mn0M+N-k0Nzn
111 110 mul02d φzk0Mn0M+N-k0N0zn=0
112 108 111 eqtrd φzk0Mn0M+N-k0NBnzn=0
113 112 oveq2d φzk0Mn0M+N-k0NAkzkBnzn=Akzk0
114 66 adantr φzk0Mn0M+N-k0NAkzk
115 114 mul01d φzk0Mn0M+N-k0NAkzk0=0
116 113 115 eqtrd φzk0Mn0M+N-k0NAkzkBnzn=0
117 fzfid φzk0M0M+N-kFin
118 65 71 116 117 fsumss φzk0Mn=0NAkzkBnzn=n=0M+N-kAkzkBnzn
119 118 sumeq2dv φzk=0Mn=0NAkzkBnzn=k=0Mn=0M+N-kAkzkBnzn
120 fzfid φz0MFin
121 fzfid φz0NFin
122 120 121 66 69 fsum2mul φzk=0Mn=0NAkzkBnzn=k=0MAkzkn=0NBnzn
123 44 46 addcomd φM+N=N+M
124 4 54 eleqtrdi φN0
125 3 nn0zd φM
126 eluzadd N0MN+M0+M
127 124 125 126 syl2anc φN+M0+M
128 44 addlidd φ0+M=M
129 128 fveq2d φ0+M=M
130 127 129 eleqtrd φN+MM
131 123 130 eqeltrd φM+NM
132 fzss2 M+NM0M0M+N
133 131 132 syl φ0M0M+N
134 133 adantr φz0M0M+N
135 66 adantr φzk0Mn0M+N-kAkzk
136 39 adantlr φzk0Mn0M+N-kBnzn
137 135 136 mulcld φzk0Mn0M+N-kAkzkBnzn
138 117 137 fsumcl φzk0Mn=0M+N-kAkzkBnzn
139 eldifn k0M+N0M¬k0M
140 139 adantl φzk0M+N0M¬k0M
141 eldifi k0M+N0Mk0M+N
142 141 26 syl k0M+N0Mk0
143 142 adantl φzk0M+N0Mk0
144 peano2nn0 M0M+10
145 3 144 syl φM+10
146 145 54 eleqtrdi φM+10
147 uzsplit M+100=0M+1-1M+1
148 146 147 syl φ0=0M+1-1M+1
149 54 148 eqtrid φ0=0M+1-1M+1
150 pncan M1M+1-1=M
151 44 83 150 sylancl φM+1-1=M
152 151 oveq2d φ0M+1-1=0M
153 152 uneq1d φ0M+1-1M+1=0MM+1
154 149 153 eqtrd φ0=0MM+1
155 154 ad2antrr φzk0M+N0M0=0MM+1
156 143 155 eleqtrd φzk0M+N0Mk0MM+1
157 elun k0MM+1k0MkM+1
158 156 157 sylib φzk0M+N0Mk0MkM+1
159 158 ord φzk0M+N0M¬k0MkM+1
160 140 159 mpd φzk0M+N0MkM+1
161 5 ffund φFunA
162 ssun2 M+10M+1-1M+1
163 162 149 sseqtrrid φM+10
164 5 fdmd φdomA=0
165 163 164 sseqtrrd φM+1domA
166 funfvima2 FunAM+1domAkM+1AkAM+1
167 161 165 166 syl2anc φkM+1AkAM+1
168 167 ad2antrr φzk0M+N0MkM+1AkAM+1
169 160 168 mpd φzk0M+N0MAkAM+1
170 7 ad2antrr φzk0M+N0MAM+1=0
171 169 170 eleqtrd φzk0M+N0MAk0
172 elsni Ak0Ak=0
173 171 172 syl φzk0M+N0MAk=0
174 173 oveq1d φzk0M+N0MAkzk=0zk
175 142 30 sylan2 φzk0M+N0Mzk
176 175 mul02d φzk0M+N0M0zk=0
177 174 176 eqtrd φzk0M+N0MAkzk=0
178 177 adantr φzk0M+N0Mn0M+N-kAkzk=0
179 178 oveq1d φzk0M+N0Mn0M+N-kAkzkBnzn=0Bnzn
180 39 adantlr φzk0M+N0Mn0M+N-kBnzn
181 180 mul02d φzk0M+N0Mn0M+N-k0Bnzn=0
182 179 181 eqtrd φzk0M+N0Mn0M+N-kAkzkBnzn=0
183 182 sumeq2dv φzk0M+N0Mn=0M+N-kAkzkBnzn=n=0M+N-k0
184 fzfid φzk0M+N0M0M+N-kFin
185 184 olcd φzk0M+N0M0M+N-k00M+N-kFin
186 sumz 0M+N-k00M+N-kFinn=0M+N-k0=0
187 185 186 syl φzk0M+N0Mn=0M+N-k0=0
188 183 187 eqtrd φzk0M+N0Mn=0M+N-kAkzkBnzn=0
189 fzfid φz0M+NFin
190 134 138 188 189 fsumss φzk=0Mn=0M+N-kAkzkBnzn=k=0M+Nn=0M+N-kAkzkBnzn
191 119 122 190 3eqtr3d φzk=0MAkzkn=0NBnzn=k=0M+Nn=0M+N-kAkzkBnzn
192 fzfid φzn0M+N0nFin
193 elfznn0 n0M+Nn0
194 193 37 sylan2 φzn0M+Nzn
195 simpll φzn0M+Nφ
196 elfznn0 k0nk0
197 5 ffvelcdmda φk0Ak
198 195 196 197 syl2an φzn0M+Nk0nAk
199 fznn0sub k0nnk0
200 6 ffvelcdmda φnk0Bnk
201 195 199 200 syl2an φzn0M+Nk0nBnk
202 198 201 mulcld φzn0M+Nk0nAkBnk
203 192 194 202 fsummulc1 φzn0M+Nk=0nAkBnkzn=k=0nAkBnkzn
204 simplr φzn0M+Nz
205 204 196 29 syl2an φzn0M+Nk0nzk
206 expcl znk0znk
207 204 199 206 syl2an φzn0M+Nk0nznk
208 198 205 201 207 mul4d φzn0M+Nk0nAkzkBnkznk=AkBnkzkznk
209 204 adantr φzn0M+Nk0nz
210 199 adantl φzn0M+Nk0nnk0
211 196 adantl φzn0M+Nk0nk0
212 209 210 211 expaddd φzn0M+Nk0nzk+n-k=zkznk
213 211 nn0cnd φzn0M+Nk0nk
214 193 ad2antlr φzn0M+Nk0nn0
215 214 nn0cnd φzn0M+Nk0nn
216 213 215 pncan3d φzn0M+Nk0nk+n-k=n
217 216 oveq2d φzn0M+Nk0nzk+n-k=zn
218 212 217 eqtr3d φzn0M+Nk0nzkznk=zn
219 218 oveq2d φzn0M+Nk0nAkBnkzkznk=AkBnkzn
220 208 219 eqtrd φzn0M+Nk0nAkzkBnkznk=AkBnkzn
221 220 sumeq2dv φzn0M+Nk=0nAkzkBnkznk=k=0nAkBnkzn
222 203 221 eqtr4d φzn0M+Nk=0nAkBnkzn=k=0nAkzkBnkznk
223 222 sumeq2dv φzn=0M+Nk=0nAkBnkzn=n=0M+Nk=0nAkzkBnkznk
224 43 191 223 3eqtr4rd φzn=0M+Nk=0nAkBnkzn=k=0MAkzkn=0NBnzn
225 fveq2 n=kBn=Bk
226 oveq2 n=kzn=zk
227 225 226 oveq12d n=kBnzn=Bkzk
228 227 cbvsumv n=0NBnzn=k=0NBkzk
229 228 oveq2i k=0MAkzkn=0NBnzn=k=0MAkzkk=0NBkzk
230 224 229 eqtrdi φzn=0M+Nk=0nAkBnkzn=k=0MAkzkk=0NBkzk
231 230 mpteq2dva φzn=0M+Nk=0nAkBnkzn=zk=0MAkzkk=0NBkzk
232 17 231 eqtr4d φF×fG=zn=0M+Nk=0nAkBnkzn