Metamath Proof Explorer


Theorem plymullem1

Description: Derive the coefficient function for the product of two polynomials. (Contributed by Mario Carneiro, 23-Jul-2014)

Ref Expression
Hypotheses plyaddlem.1 φ F Poly S
plyaddlem.2 φ G Poly S
plyaddlem.m φ M 0
plyaddlem.n φ N 0
plyaddlem.a φ A : 0
plyaddlem.b φ B : 0
plyaddlem.a2 φ A M + 1 = 0
plyaddlem.b2 φ B N + 1 = 0
plyaddlem.f φ F = z k = 0 M A k z k
plyaddlem.g φ G = z k = 0 N B k z k
Assertion plymullem1 φ F × f G = z n = 0 M + N k = 0 n A k B n k z n

Proof

Step Hyp Ref Expression
1 plyaddlem.1 φ F Poly S
2 plyaddlem.2 φ G Poly S
3 plyaddlem.m φ M 0
4 plyaddlem.n φ N 0
5 plyaddlem.a φ A : 0
6 plyaddlem.b φ B : 0
7 plyaddlem.a2 φ A M + 1 = 0
8 plyaddlem.b2 φ B N + 1 = 0
9 plyaddlem.f φ F = z k = 0 M A k z k
10 plyaddlem.g φ G = z k = 0 N B k z k
11 cnex V
12 11 a1i φ V
13 sumex k = 0 M A k z k V
14 13 a1i φ z k = 0 M A k z k V
15 sumex k = 0 N B k z k V
16 15 a1i φ z k = 0 N B k z k V
17 12 14 16 9 10 offval2 φ F × f G = z k = 0 M A k z k k = 0 N B k z k
18 fveq2 m = n B m = B n
19 oveq2 m = n z m = z n
20 18 19 oveq12d m = n B m z m = B n z n
21 20 oveq2d m = n A k z k B m z m = A k z k B n z n
22 fveq2 m = n k B m = B n k
23 oveq2 m = n k z m = z n k
24 22 23 oveq12d m = n k B m z m = B n k z n k
25 24 oveq2d m = n k A k z k B m z m = A k z k B n k z n k
26 elfznn0 k 0 M + N k 0
27 5 adantr φ z A : 0
28 27 ffvelrnda φ z k 0 A k
29 expcl z k 0 z k
30 29 adantll φ z k 0 z k
31 28 30 mulcld φ z k 0 A k z k
32 26 31 sylan2 φ z k 0 M + N A k z k
33 elfznn0 n 0 M + N - k n 0
34 6 adantr φ z B : 0
35 34 ffvelrnda φ z n 0 B n
36 expcl z n 0 z n
37 36 adantll φ z n 0 z n
38 35 37 mulcld φ z n 0 B n z n
39 33 38 sylan2 φ z n 0 M + N - k B n z n
40 32 39 anim12dan φ z k 0 M + N n 0 M + N - k A k z k B n z n
41 mulcl A k z k B n z n A k z k B n z n
42 40 41 syl φ z k 0 M + N n 0 M + N - k A k z k B n z n
43 21 25 42 fsum0diag2 φ z k = 0 M + N n = 0 M + N - k A k z k B n z n = n = 0 M + N k = 0 n A k z k B n k z n k
44 3 nn0cnd φ M
45 44 ad2antrr φ z k 0 M M
46 4 nn0cnd φ N
47 46 ad2antrr φ z k 0 M N
48 elfznn0 k 0 M k 0
49 48 adantl φ z k 0 M k 0
50 49 nn0cnd φ z k 0 M k
51 45 47 50 addsubd φ z k 0 M M + N - k = M - k + N
52 fznn0sub k 0 M M k 0
53 52 adantl φ z k 0 M M k 0
54 nn0uz 0 = 0
55 53 54 eleqtrdi φ z k 0 M M k 0
56 4 nn0zd φ N
57 56 ad2antrr φ z k 0 M N
58 eluzadd M k 0 N M - k + N 0 + N
59 55 57 58 syl2anc φ z k 0 M M - k + N 0 + N
60 51 59 eqeltrd φ z k 0 M M + N - k 0 + N
61 47 addid2d φ z k 0 M 0 + N = N
62 61 fveq2d φ z k 0 M 0 + N = N
63 60 62 eleqtrd φ z k 0 M M + N - k N
64 fzss2 M + N - k N 0 N 0 M + N - k
65 63 64 syl φ z k 0 M 0 N 0 M + N - k
66 48 31 sylan2 φ z k 0 M A k z k
67 66 adantr φ z k 0 M n 0 N A k z k
68 elfznn0 n 0 N n 0
69 68 38 sylan2 φ z n 0 N B n z n
70 69 adantlr φ z k 0 M n 0 N B n z n
71 67 70 mulcld φ z k 0 M n 0 N A k z k B n z n
72 eldifn n 0 M + N - k 0 N ¬ n 0 N
73 72 adantl φ z k 0 M n 0 M + N - k 0 N ¬ n 0 N
74 eldifi n 0 M + N - k 0 N n 0 M + N - k
75 74 33 syl n 0 M + N - k 0 N n 0
76 75 adantl φ z k 0 M n 0 M + N - k 0 N n 0
77 peano2nn0 N 0 N + 1 0
78 4 77 syl φ N + 1 0
79 78 54 eleqtrdi φ N + 1 0
80 uzsplit N + 1 0 0 = 0 N + 1 - 1 N + 1
81 79 80 syl φ 0 = 0 N + 1 - 1 N + 1
82 54 81 eqtrid φ 0 = 0 N + 1 - 1 N + 1
83 ax-1cn 1
84 pncan N 1 N + 1 - 1 = N
85 46 83 84 sylancl φ N + 1 - 1 = N
86 85 oveq2d φ 0 N + 1 - 1 = 0 N
87 86 uneq1d φ 0 N + 1 - 1 N + 1 = 0 N N + 1
88 82 87 eqtrd φ 0 = 0 N N + 1
89 88 ad3antrrr φ z k 0 M n 0 M + N - k 0 N 0 = 0 N N + 1
90 76 89 eleqtrd φ z k 0 M n 0 M + N - k 0 N n 0 N N + 1
91 elun n 0 N N + 1 n 0 N n N + 1
92 90 91 sylib φ z k 0 M n 0 M + N - k 0 N n 0 N n N + 1
93 92 ord φ z k 0 M n 0 M + N - k 0 N ¬ n 0 N n N + 1
94 73 93 mpd φ z k 0 M n 0 M + N - k 0 N n N + 1
95 6 ffund φ Fun B
96 ssun2 N + 1 0 N + 1 - 1 N + 1
97 96 82 sseqtrrid φ N + 1 0
98 6 fdmd φ dom B = 0
99 97 98 sseqtrrd φ N + 1 dom B
100 funfvima2 Fun B N + 1 dom B n N + 1 B n B N + 1
101 95 99 100 syl2anc φ n N + 1 B n B N + 1
102 101 ad3antrrr φ z k 0 M n 0 M + N - k 0 N n N + 1 B n B N + 1
103 94 102 mpd φ z k 0 M n 0 M + N - k 0 N B n B N + 1
104 8 ad3antrrr φ z k 0 M n 0 M + N - k 0 N B N + 1 = 0
105 103 104 eleqtrd φ z k 0 M n 0 M + N - k 0 N B n 0
106 elsni B n 0 B n = 0
107 105 106 syl φ z k 0 M n 0 M + N - k 0 N B n = 0
108 107 oveq1d φ z k 0 M n 0 M + N - k 0 N B n z n = 0 z n
109 simplr φ z k 0 M z
110 109 75 36 syl2an φ z k 0 M n 0 M + N - k 0 N z n
111 110 mul02d φ z k 0 M n 0 M + N - k 0 N 0 z n = 0
112 108 111 eqtrd φ z k 0 M n 0 M + N - k 0 N B n z n = 0
113 112 oveq2d φ z k 0 M n 0 M + N - k 0 N A k z k B n z n = A k z k 0
114 66 adantr φ z k 0 M n 0 M + N - k 0 N A k z k
115 114 mul01d φ z k 0 M n 0 M + N - k 0 N A k z k 0 = 0
116 113 115 eqtrd φ z k 0 M n 0 M + N - k 0 N A k z k B n z n = 0
117 fzfid φ z k 0 M 0 M + N - k Fin
118 65 71 116 117 fsumss φ z k 0 M n = 0 N A k z k B n z n = n = 0 M + N - k A k z k B n z n
119 118 sumeq2dv φ z k = 0 M n = 0 N A k z k B n z n = k = 0 M n = 0 M + N - k A k z k B n z n
120 fzfid φ z 0 M Fin
121 fzfid φ z 0 N Fin
122 120 121 66 69 fsum2mul φ z k = 0 M n = 0 N A k z k B n z n = k = 0 M A k z k n = 0 N B n z n
123 44 46 addcomd φ M + N = N + M
124 4 54 eleqtrdi φ N 0
125 3 nn0zd φ M
126 eluzadd N 0 M N + M 0 + M
127 124 125 126 syl2anc φ N + M 0 + M
128 44 addid2d φ 0 + M = M
129 128 fveq2d φ 0 + M = M
130 127 129 eleqtrd φ N + M M
131 123 130 eqeltrd φ M + N M
132 fzss2 M + N M 0 M 0 M + N
133 131 132 syl φ 0 M 0 M + N
134 133 adantr φ z 0 M 0 M + N
135 66 adantr φ z k 0 M n 0 M + N - k A k z k
136 39 adantlr φ z k 0 M n 0 M + N - k B n z n
137 135 136 mulcld φ z k 0 M n 0 M + N - k A k z k B n z n
138 117 137 fsumcl φ z k 0 M n = 0 M + N - k A k z k B n z n
139 eldifn k 0 M + N 0 M ¬ k 0 M
140 139 adantl φ z k 0 M + N 0 M ¬ k 0 M
141 eldifi k 0 M + N 0 M k 0 M + N
142 141 26 syl k 0 M + N 0 M k 0
143 142 adantl φ z k 0 M + N 0 M k 0
144 peano2nn0 M 0 M + 1 0
145 3 144 syl φ M + 1 0
146 145 54 eleqtrdi φ M + 1 0
147 uzsplit M + 1 0 0 = 0 M + 1 - 1 M + 1
148 146 147 syl φ 0 = 0 M + 1 - 1 M + 1
149 54 148 eqtrid φ 0 = 0 M + 1 - 1 M + 1
150 pncan M 1 M + 1 - 1 = M
151 44 83 150 sylancl φ M + 1 - 1 = M
152 151 oveq2d φ 0 M + 1 - 1 = 0 M
153 152 uneq1d φ 0 M + 1 - 1 M + 1 = 0 M M + 1
154 149 153 eqtrd φ 0 = 0 M M + 1
155 154 ad2antrr φ z k 0 M + N 0 M 0 = 0 M M + 1
156 143 155 eleqtrd φ z k 0 M + N 0 M k 0 M M + 1
157 elun k 0 M M + 1 k 0 M k M + 1
158 156 157 sylib φ z k 0 M + N 0 M k 0 M k M + 1
159 158 ord φ z k 0 M + N 0 M ¬ k 0 M k M + 1
160 140 159 mpd φ z k 0 M + N 0 M k M + 1
161 5 ffund φ Fun A
162 ssun2 M + 1 0 M + 1 - 1 M + 1
163 162 149 sseqtrrid φ M + 1 0
164 5 fdmd φ dom A = 0
165 163 164 sseqtrrd φ M + 1 dom A
166 funfvima2 Fun A M + 1 dom A k M + 1 A k A M + 1
167 161 165 166 syl2anc φ k M + 1 A k A M + 1
168 167 ad2antrr φ z k 0 M + N 0 M k M + 1 A k A M + 1
169 160 168 mpd φ z k 0 M + N 0 M A k A M + 1
170 7 ad2antrr φ z k 0 M + N 0 M A M + 1 = 0
171 169 170 eleqtrd φ z k 0 M + N 0 M A k 0
172 elsni A k 0 A k = 0
173 171 172 syl φ z k 0 M + N 0 M A k = 0
174 173 oveq1d φ z k 0 M + N 0 M A k z k = 0 z k
175 142 30 sylan2 φ z k 0 M + N 0 M z k
176 175 mul02d φ z k 0 M + N 0 M 0 z k = 0
177 174 176 eqtrd φ z k 0 M + N 0 M A k z k = 0
178 177 adantr φ z k 0 M + N 0 M n 0 M + N - k A k z k = 0
179 178 oveq1d φ z k 0 M + N 0 M n 0 M + N - k A k z k B n z n = 0 B n z n
180 39 adantlr φ z k 0 M + N 0 M n 0 M + N - k B n z n
181 180 mul02d φ z k 0 M + N 0 M n 0 M + N - k 0 B n z n = 0
182 179 181 eqtrd φ z k 0 M + N 0 M n 0 M + N - k A k z k B n z n = 0
183 182 sumeq2dv φ z k 0 M + N 0 M n = 0 M + N - k A k z k B n z n = n = 0 M + N - k 0
184 fzfid φ z k 0 M + N 0 M 0 M + N - k Fin
185 184 olcd φ z k 0 M + N 0 M 0 M + N - k 0 0 M + N - k Fin
186 sumz 0 M + N - k 0 0 M + N - k Fin n = 0 M + N - k 0 = 0
187 185 186 syl φ z k 0 M + N 0 M n = 0 M + N - k 0 = 0
188 183 187 eqtrd φ z k 0 M + N 0 M n = 0 M + N - k A k z k B n z n = 0
189 fzfid φ z 0 M + N Fin
190 134 138 188 189 fsumss φ z k = 0 M n = 0 M + N - k A k z k B n z n = k = 0 M + N n = 0 M + N - k A k z k B n z n
191 119 122 190 3eqtr3d φ z k = 0 M A k z k n = 0 N B n z n = k = 0 M + N n = 0 M + N - k A k z k B n z n
192 fzfid φ z n 0 M + N 0 n Fin
193 elfznn0 n 0 M + N n 0
194 193 37 sylan2 φ z n 0 M + N z n
195 simpll φ z n 0 M + N φ
196 elfznn0 k 0 n k 0
197 5 ffvelrnda φ k 0 A k
198 195 196 197 syl2an φ z n 0 M + N k 0 n A k
199 fznn0sub k 0 n n k 0
200 6 ffvelrnda φ n k 0 B n k
201 195 199 200 syl2an φ z n 0 M + N k 0 n B n k
202 198 201 mulcld φ z n 0 M + N k 0 n A k B n k
203 192 194 202 fsummulc1 φ z n 0 M + N k = 0 n A k B n k z n = k = 0 n A k B n k z n
204 simplr φ z n 0 M + N z
205 204 196 29 syl2an φ z n 0 M + N k 0 n z k
206 expcl z n k 0 z n k
207 204 199 206 syl2an φ z n 0 M + N k 0 n z n k
208 198 205 201 207 mul4d φ z n 0 M + N k 0 n A k z k B n k z n k = A k B n k z k z n k
209 204 adantr φ z n 0 M + N k 0 n z
210 199 adantl φ z n 0 M + N k 0 n n k 0
211 196 adantl φ z n 0 M + N k 0 n k 0
212 209 210 211 expaddd φ z n 0 M + N k 0 n z k + n - k = z k z n k
213 211 nn0cnd φ z n 0 M + N k 0 n k
214 193 ad2antlr φ z n 0 M + N k 0 n n 0
215 214 nn0cnd φ z n 0 M + N k 0 n n
216 213 215 pncan3d φ z n 0 M + N k 0 n k + n - k = n
217 216 oveq2d φ z n 0 M + N k 0 n z k + n - k = z n
218 212 217 eqtr3d φ z n 0 M + N k 0 n z k z n k = z n
219 218 oveq2d φ z n 0 M + N k 0 n A k B n k z k z n k = A k B n k z n
220 208 219 eqtrd φ z n 0 M + N k 0 n A k z k B n k z n k = A k B n k z n
221 220 sumeq2dv φ z n 0 M + N k = 0 n A k z k B n k z n k = k = 0 n A k B n k z n
222 203 221 eqtr4d φ z n 0 M + N k = 0 n A k B n k z n = k = 0 n A k z k B n k z n k
223 222 sumeq2dv φ z n = 0 M + N k = 0 n A k B n k z n = n = 0 M + N k = 0 n A k z k B n k z n k
224 43 191 223 3eqtr4rd φ z n = 0 M + N k = 0 n A k B n k z n = k = 0 M A k z k n = 0 N B n z n
225 fveq2 n = k B n = B k
226 oveq2 n = k z n = z k
227 225 226 oveq12d n = k B n z n = B k z k
228 227 cbvsumv n = 0 N B n z n = k = 0 N B k z k
229 228 oveq2i k = 0 M A k z k n = 0 N B n z n = k = 0 M A k z k k = 0 N B k z k
230 224 229 eqtrdi φ z n = 0 M + N k = 0 n A k B n k z n = k = 0 M A k z k k = 0 N B k z k
231 230 mpteq2dva φ z n = 0 M + N k = 0 n A k B n k z n = z k = 0 M A k z k k = 0 N B k z k
232 17 231 eqtr4d φ F × f G = z n = 0 M + N k = 0 n A k B n k z n