Step |
Hyp |
Ref |
Expression |
1 |
|
plyaddlem.1 |
|
2 |
|
plyaddlem.2 |
|
3 |
|
plyaddlem.m |
|
4 |
|
plyaddlem.n |
|
5 |
|
plyaddlem.a |
|
6 |
|
plyaddlem.b |
|
7 |
|
plyaddlem.a2 |
|
8 |
|
plyaddlem.b2 |
|
9 |
|
plyaddlem.f |
|
10 |
|
plyaddlem.g |
|
11 |
|
cnex |
|
12 |
11
|
a1i |
|
13 |
|
sumex |
|
14 |
13
|
a1i |
|
15 |
|
sumex |
|
16 |
15
|
a1i |
|
17 |
12 14 16 9 10
|
offval2 |
|
18 |
|
fveq2 |
|
19 |
|
oveq2 |
|
20 |
18 19
|
oveq12d |
|
21 |
20
|
oveq2d |
|
22 |
|
fveq2 |
|
23 |
|
oveq2 |
|
24 |
22 23
|
oveq12d |
|
25 |
24
|
oveq2d |
|
26 |
|
elfznn0 |
|
27 |
5
|
adantr |
|
28 |
27
|
ffvelrnda |
|
29 |
|
expcl |
|
30 |
29
|
adantll |
|
31 |
28 30
|
mulcld |
|
32 |
26 31
|
sylan2 |
|
33 |
|
elfznn0 |
|
34 |
6
|
adantr |
|
35 |
34
|
ffvelrnda |
|
36 |
|
expcl |
|
37 |
36
|
adantll |
|
38 |
35 37
|
mulcld |
|
39 |
33 38
|
sylan2 |
|
40 |
32 39
|
anim12dan |
|
41 |
|
mulcl |
|
42 |
40 41
|
syl |
|
43 |
21 25 42
|
fsum0diag2 |
|
44 |
3
|
nn0cnd |
|
45 |
44
|
ad2antrr |
|
46 |
4
|
nn0cnd |
|
47 |
46
|
ad2antrr |
|
48 |
|
elfznn0 |
|
49 |
48
|
adantl |
|
50 |
49
|
nn0cnd |
|
51 |
45 47 50
|
addsubd |
|
52 |
|
fznn0sub |
|
53 |
52
|
adantl |
|
54 |
|
nn0uz |
|
55 |
53 54
|
eleqtrdi |
|
56 |
4
|
nn0zd |
|
57 |
56
|
ad2antrr |
|
58 |
|
eluzadd |
|
59 |
55 57 58
|
syl2anc |
|
60 |
51 59
|
eqeltrd |
|
61 |
47
|
addid2d |
|
62 |
61
|
fveq2d |
|
63 |
60 62
|
eleqtrd |
|
64 |
|
fzss2 |
|
65 |
63 64
|
syl |
|
66 |
48 31
|
sylan2 |
|
67 |
66
|
adantr |
|
68 |
|
elfznn0 |
|
69 |
68 38
|
sylan2 |
|
70 |
69
|
adantlr |
|
71 |
67 70
|
mulcld |
|
72 |
|
eldifn |
|
73 |
72
|
adantl |
|
74 |
|
eldifi |
|
75 |
74 33
|
syl |
|
76 |
75
|
adantl |
|
77 |
|
peano2nn0 |
|
78 |
4 77
|
syl |
|
79 |
78 54
|
eleqtrdi |
|
80 |
|
uzsplit |
|
81 |
79 80
|
syl |
|
82 |
54 81
|
eqtrid |
|
83 |
|
ax-1cn |
|
84 |
|
pncan |
|
85 |
46 83 84
|
sylancl |
|
86 |
85
|
oveq2d |
|
87 |
86
|
uneq1d |
|
88 |
82 87
|
eqtrd |
|
89 |
88
|
ad3antrrr |
|
90 |
76 89
|
eleqtrd |
|
91 |
|
elun |
|
92 |
90 91
|
sylib |
|
93 |
92
|
ord |
|
94 |
73 93
|
mpd |
|
95 |
6
|
ffund |
|
96 |
|
ssun2 |
|
97 |
96 82
|
sseqtrrid |
|
98 |
6
|
fdmd |
|
99 |
97 98
|
sseqtrrd |
|
100 |
|
funfvima2 |
|
101 |
95 99 100
|
syl2anc |
|
102 |
101
|
ad3antrrr |
|
103 |
94 102
|
mpd |
|
104 |
8
|
ad3antrrr |
|
105 |
103 104
|
eleqtrd |
|
106 |
|
elsni |
|
107 |
105 106
|
syl |
|
108 |
107
|
oveq1d |
|
109 |
|
simplr |
|
110 |
109 75 36
|
syl2an |
|
111 |
110
|
mul02d |
|
112 |
108 111
|
eqtrd |
|
113 |
112
|
oveq2d |
|
114 |
66
|
adantr |
|
115 |
114
|
mul01d |
|
116 |
113 115
|
eqtrd |
|
117 |
|
fzfid |
|
118 |
65 71 116 117
|
fsumss |
|
119 |
118
|
sumeq2dv |
|
120 |
|
fzfid |
|
121 |
|
fzfid |
|
122 |
120 121 66 69
|
fsum2mul |
|
123 |
44 46
|
addcomd |
|
124 |
4 54
|
eleqtrdi |
|
125 |
3
|
nn0zd |
|
126 |
|
eluzadd |
|
127 |
124 125 126
|
syl2anc |
|
128 |
44
|
addid2d |
|
129 |
128
|
fveq2d |
|
130 |
127 129
|
eleqtrd |
|
131 |
123 130
|
eqeltrd |
|
132 |
|
fzss2 |
|
133 |
131 132
|
syl |
|
134 |
133
|
adantr |
|
135 |
66
|
adantr |
|
136 |
39
|
adantlr |
|
137 |
135 136
|
mulcld |
|
138 |
117 137
|
fsumcl |
|
139 |
|
eldifn |
|
140 |
139
|
adantl |
|
141 |
|
eldifi |
|
142 |
141 26
|
syl |
|
143 |
142
|
adantl |
|
144 |
|
peano2nn0 |
|
145 |
3 144
|
syl |
|
146 |
145 54
|
eleqtrdi |
|
147 |
|
uzsplit |
|
148 |
146 147
|
syl |
|
149 |
54 148
|
eqtrid |
|
150 |
|
pncan |
|
151 |
44 83 150
|
sylancl |
|
152 |
151
|
oveq2d |
|
153 |
152
|
uneq1d |
|
154 |
149 153
|
eqtrd |
|
155 |
154
|
ad2antrr |
|
156 |
143 155
|
eleqtrd |
|
157 |
|
elun |
|
158 |
156 157
|
sylib |
|
159 |
158
|
ord |
|
160 |
140 159
|
mpd |
|
161 |
5
|
ffund |
|
162 |
|
ssun2 |
|
163 |
162 149
|
sseqtrrid |
|
164 |
5
|
fdmd |
|
165 |
163 164
|
sseqtrrd |
|
166 |
|
funfvima2 |
|
167 |
161 165 166
|
syl2anc |
|
168 |
167
|
ad2antrr |
|
169 |
160 168
|
mpd |
|
170 |
7
|
ad2antrr |
|
171 |
169 170
|
eleqtrd |
|
172 |
|
elsni |
|
173 |
171 172
|
syl |
|
174 |
173
|
oveq1d |
|
175 |
142 30
|
sylan2 |
|
176 |
175
|
mul02d |
|
177 |
174 176
|
eqtrd |
|
178 |
177
|
adantr |
|
179 |
178
|
oveq1d |
|
180 |
39
|
adantlr |
|
181 |
180
|
mul02d |
|
182 |
179 181
|
eqtrd |
|
183 |
182
|
sumeq2dv |
|
184 |
|
fzfid |
|
185 |
184
|
olcd |
|
186 |
|
sumz |
|
187 |
185 186
|
syl |
|
188 |
183 187
|
eqtrd |
|
189 |
|
fzfid |
|
190 |
134 138 188 189
|
fsumss |
|
191 |
119 122 190
|
3eqtr3d |
|
192 |
|
fzfid |
|
193 |
|
elfznn0 |
|
194 |
193 37
|
sylan2 |
|
195 |
|
simpll |
|
196 |
|
elfznn0 |
|
197 |
5
|
ffvelrnda |
|
198 |
195 196 197
|
syl2an |
|
199 |
|
fznn0sub |
|
200 |
6
|
ffvelrnda |
|
201 |
195 199 200
|
syl2an |
|
202 |
198 201
|
mulcld |
|
203 |
192 194 202
|
fsummulc1 |
|
204 |
|
simplr |
|
205 |
204 196 29
|
syl2an |
|
206 |
|
expcl |
|
207 |
204 199 206
|
syl2an |
|
208 |
198 205 201 207
|
mul4d |
|
209 |
204
|
adantr |
|
210 |
199
|
adantl |
|
211 |
196
|
adantl |
|
212 |
209 210 211
|
expaddd |
|
213 |
211
|
nn0cnd |
|
214 |
193
|
ad2antlr |
|
215 |
214
|
nn0cnd |
|
216 |
213 215
|
pncan3d |
|
217 |
216
|
oveq2d |
|
218 |
212 217
|
eqtr3d |
|
219 |
218
|
oveq2d |
|
220 |
208 219
|
eqtrd |
|
221 |
220
|
sumeq2dv |
|
222 |
203 221
|
eqtr4d |
|
223 |
222
|
sumeq2dv |
|
224 |
43 191 223
|
3eqtr4rd |
|
225 |
|
fveq2 |
|
226 |
|
oveq2 |
|
227 |
225 226
|
oveq12d |
|
228 |
227
|
cbvsumv |
|
229 |
228
|
oveq2i |
|
230 |
224 229
|
eqtrdi |
|
231 |
230
|
mpteq2dva |
|
232 |
17 231
|
eqtr4d |
|