Metamath Proof Explorer


Theorem ptcnplem

Description: Lemma for ptcnp . (Contributed by Mario Carneiro, 3-Feb-2015) (Revised by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypotheses ptcnp.2 K=𝑡F
ptcnp.3 φJTopOnX
ptcnp.4 φIV
ptcnp.5 φF:ITop
ptcnp.6 φDX
ptcnp.7 φkIxXAJCnPFkD
ptcnplem.1 kψ
ptcnplem.2 φψGFnI
ptcnplem.3 φψkIGkFk
ptcnplem.4 φψWFin
ptcnplem.5 φψkIWGk=Fk
ptcnplem.6 φψxXkIADkIGk
Assertion ptcnplem φψzJDzxXkIAzkIGk

Proof

Step Hyp Ref Expression
1 ptcnp.2 K=𝑡F
2 ptcnp.3 φJTopOnX
3 ptcnp.4 φIV
4 ptcnp.5 φF:ITop
5 ptcnp.6 φDX
6 ptcnp.7 φkIxXAJCnPFkD
7 ptcnplem.1 kψ
8 ptcnplem.2 φψGFnI
9 ptcnplem.3 φψkIGkFk
10 ptcnplem.4 φψWFin
11 ptcnplem.5 φψkIWGk=Fk
12 ptcnplem.6 φψxXkIADkIGk
13 inss2 IWW
14 ssfi WFinIWWIWFin
15 10 13 14 sylancl φψIWFin
16 nfv kφ
17 16 7 nfan kφψ
18 elinel1 kIWkI
19 6 adantlr φψkIxXAJCnPFkD
20 5 adantr φψDX
21 simpr φkIxXxX
22 2 adantr φkIJTopOnX
23 4 ffvelcdmda φkIFkTop
24 toptopon2 FkTopFkTopOnFk
25 23 24 sylib φkIFkTopOnFk
26 cnpf2 JTopOnXFkTopOnFkxXAJCnPFkDxXA:XFk
27 22 25 6 26 syl3anc φkIxXA:XFk
28 eqid xXA=xXA
29 28 fmpt xXAFkxXA:XFk
30 27 29 sylibr φkIxXAFk
31 30 r19.21bi φkIxXAFk
32 28 fvmpt2 xXAFkxXAx=A
33 21 31 32 syl2anc φkIxXxXAx=A
34 33 an32s φxXkIxXAx=A
35 34 mpteq2dva φxXkIxXAx=kIA
36 simpr φxXxX
37 3 adantr φxXIV
38 37 mptexd φxXkIAV
39 eqid xXkIA=xXkIA
40 39 fvmpt2 xXkIAVxXkIAx=kIA
41 36 38 40 syl2anc φxXxXkIAx=kIA
42 35 41 eqtr4d φxXkIxXAx=xXkIAx
43 42 ralrimiva φxXkIxXAx=xXkIAx
44 43 adantr φψxXkIxXAx=xXkIAx
45 nfcv _xI
46 nffvmpt1 _xxXAD
47 45 46 nfmpt _xkIxXAD
48 nffvmpt1 _xxXkIAD
49 47 48 nfeq xkIxXAD=xXkIAD
50 fveq2 x=DxXAx=xXAD
51 50 mpteq2dv x=DkIxXAx=kIxXAD
52 fveq2 x=DxXkIAx=xXkIAD
53 51 52 eqeq12d x=DkIxXAx=xXkIAxkIxXAD=xXkIAD
54 49 53 rspc DXxXkIxXAx=xXkIAxkIxXAD=xXkIAD
55 20 44 54 sylc φψkIxXAD=xXkIAD
56 55 12 eqeltrd φψkIxXADkIGk
57 3 adantr φψIV
58 mptelixpg IVkIxXADkIGkkIxXADGk
59 57 58 syl φψkIxXADkIGkkIxXADGk
60 56 59 mpbid φψkIxXADGk
61 60 r19.21bi φψkIxXADGk
62 cnpimaex xXAJCnPFkDGkFkxXADGkuJDuxXAuGk
63 19 9 61 62 syl3anc φψkIuJDuxXAuGk
64 18 63 sylan2 φψkIWuJDuxXAuGk
65 64 ex φψkIWuJDuxXAuGk
66 17 65 ralrimi φψkIWuJDuxXAuGk
67 eleq2 u=fkDuDfk
68 imaeq2 u=fkxXAu=xXAfk
69 68 sseq1d u=fkxXAuGkxXAfkGk
70 67 69 anbi12d u=fkDuxXAuGkDfkxXAfkGk
71 70 ac6sfi IWFinkIWuJDuxXAuGkff:IWJkIWDfkxXAfkGk
72 15 66 71 syl2anc φψff:IWJkIWDfkxXAfkGk
73 2 ad2antrr φψf:IWJkIWDfkxXAfkGkJTopOnX
74 toponuni JTopOnXX=J
75 73 74 syl φψf:IWJkIWDfkxXAfkGkX=J
76 75 ineq1d φψf:IWJkIWDfkxXAfkGkXranf=Jranf
77 topontop JTopOnXJTop
78 2 77 syl φJTop
79 78 ad2antrr φψf:IWJkIWDfkxXAfkGkJTop
80 frn f:IWJranfJ
81 80 ad2antrl φψf:IWJkIWDfkxXAfkGkranfJ
82 15 adantr φψf:IWJkIWDfkxXAfkGkIWFin
83 ffn f:IWJfFnIW
84 83 ad2antrl φψf:IWJkIWDfkxXAfkGkfFnIW
85 dffn4 fFnIWf:IWontoranf
86 84 85 sylib φψf:IWJkIWDfkxXAfkGkf:IWontoranf
87 fofi IWFinf:IWontoranfranfFin
88 82 86 87 syl2anc φψf:IWJkIWDfkxXAfkGkranfFin
89 eqid J=J
90 89 rintopn JTopranfJranfFinJranfJ
91 79 81 88 90 syl3anc φψf:IWJkIWDfkxXAfkGkJranfJ
92 76 91 eqeltrd φψf:IWJkIWDfkxXAfkGkXranfJ
93 5 ad2antrr φψf:IWJkIWDfkxXAfkGkDX
94 simpl DfkxXAfkGkDfk
95 94 ralimi kIWDfkxXAfkGkkIWDfk
96 95 ad2antll φψf:IWJkIWDfkxXAfkGkkIWDfk
97 eleq2 z=fkDzDfk
98 97 ralrn fFnIWzranfDzkIWDfk
99 84 98 syl φψf:IWJkIWDfkxXAfkGkzranfDzkIWDfk
100 96 99 mpbird φψf:IWJkIWDfkxXAfkGkzranfDz
101 elrint DXranfDXzranfDz
102 93 100 101 sylanbrc φψf:IWJkIWDfkxXAfkGkDXranf
103 nfv kf:IWJ
104 17 103 nfan kφψf:IWJ
105 funmpt FunxXA
106 simp-4l φψf:IWJkIWDfkφ
107 106 2 syl φψf:IWJkIWDfkJTopOnX
108 simpllr φψf:IWJkIWDfkf:IWJ
109 simplr φψf:IWJkIWDfkkIW
110 108 109 ffvelcdmd φψf:IWJkIWDfkfkJ
111 toponss JTopOnXfkJfkX
112 107 110 111 syl2anc φψf:IWJkIWDfkfkX
113 109 elin1d φψf:IWJkIWDfkkI
114 106 113 30 syl2anc φψf:IWJkIWDfkxXAFk
115 dmmptg xXAFkdomxXA=X
116 114 115 syl φψf:IWJkIWDfkdomxXA=X
117 112 116 sseqtrrd φψf:IWJkIWDfkfkdomxXA
118 funimass4 FunxXAfkdomxXAxXAfkGktfkxXAtGk
119 105 117 118 sylancr φψf:IWJkIWDfkxXAfkGktfkxXAtGk
120 nffvmpt1 _xxXAt
121 120 nfel1 xxXAtGk
122 nfv txXAxGk
123 fveq2 t=xxXAt=xXAx
124 123 eleq1d t=xxXAtGkxXAxGk
125 121 122 124 cbvralw tfkxXAtGkxfkxXAxGk
126 119 125 bitrdi φψf:IWJkIWDfkxXAfkGkxfkxXAxGk
127 inss1 XranfX
128 ssralv XranfXxXAFkxXranfAFk
129 127 114 128 mpsyl φψf:IWJkIWDfkxXranfAFk
130 inss2 Xranfranf
131 108 83 syl φψf:IWJkIWDfkfFnIW
132 fnfvelrn fFnIWkIWfkranf
133 131 109 132 syl2anc φψf:IWJkIWDfkfkranf
134 intss1 fkranfranffk
135 133 134 syl φψf:IWJkIWDfkranffk
136 130 135 sstrid φψf:IWJkIWDfkXranffk
137 ssralv XranffkxfkxXAxGkxXranfxXAxGk
138 136 137 syl φψf:IWJkIWDfkxfkxXAxGkxXranfxXAxGk
139 r19.26 xXranfAFkxXAxGkxXranfAFkxXranfxXAxGk
140 elinel1 xXranfxX
141 140 32 sylan xXranfAFkxXAx=A
142 141 eleq1d xXranfAFkxXAxGkAGk
143 142 biimpd xXranfAFkxXAxGkAGk
144 143 expimpd xXranfAFkxXAxGkAGk
145 144 ralimia xXranfAFkxXAxGkxXranfAGk
146 139 145 sylbir xXranfAFkxXranfxXAxGkxXranfAGk
147 129 138 146 syl6an φψf:IWJkIWDfkxfkxXAxGkxXranfAGk
148 126 147 sylbid φψf:IWJkIWDfkxXAfkGkxXranfAGk
149 148 expimpd φψf:IWJkIWDfkxXAfkGkxXranfAGk
150 104 149 ralimdaa φψf:IWJkIWDfkxXAfkGkkIWxXranfAGk
151 150 impr φψf:IWJkIWDfkxXAfkGkkIWxXranfAGk
152 simpl φψφ
153 eldifi kIWkI
154 140 31 sylan2 φkIxXranfAFk
155 154 ralrimiva φkIxXranfAFk
156 152 153 155 syl2an φψkIWxXranfAFk
157 eleq2 Gk=FkAGkAFk
158 157 ralbidv Gk=FkxXranfAGkxXranfAFk
159 11 158 syl φψkIWxXranfAGkxXranfAFk
160 156 159 mpbird φψkIWxXranfAGk
161 160 ex φψkIWxXranfAGk
162 17 161 ralrimi φψkIWxXranfAGk
163 162 adantr φψf:IWJkIWDfkxXAfkGkkIWxXranfAGk
164 inundif IWIW=I
165 164 raleqi kIWIWxXranfAGkkIxXranfAGk
166 ralunb kIWIWxXranfAGkkIWxXranfAGkkIWxXranfAGk
167 165 166 bitr3i kIxXranfAGkkIWxXranfAGkkIWxXranfAGk
168 151 163 167 sylanbrc φψf:IWJkIWDfkxXAfkGkkIxXranfAGk
169 ralcom xXranfkIAGkkIxXranfAGk
170 168 169 sylibr φψf:IWJkIWDfkxXAfkGkxXranfkIAGk
171 3 ad2antrr φψf:IWJkIWDfkxXAfkGkIV
172 nffvmpt1 _xxXkIAt
173 172 nfel1 xxXkIAtkIGk
174 nfv txXkIAxkIGk
175 fveq2 t=xxXkIAt=xXkIAx
176 175 eleq1d t=xxXkIAtkIGkxXkIAxkIGk
177 173 174 176 cbvralw tXranfxXkIAtkIGkxXranfxXkIAxkIGk
178 mptexg IVkIAV
179 140 178 40 syl2anr IVxXranfxXkIAx=kIA
180 179 eleq1d IVxXranfxXkIAxkIGkkIAkIGk
181 mptelixpg IVkIAkIGkkIAGk
182 181 adantr IVxXranfkIAkIGkkIAGk
183 180 182 bitrd IVxXranfxXkIAxkIGkkIAGk
184 183 ralbidva IVxXranfxXkIAxkIGkxXranfkIAGk
185 177 184 bitrid IVtXranfxXkIAtkIGkxXranfkIAGk
186 171 185 syl φψf:IWJkIWDfkxXAfkGktXranfxXkIAtkIGkxXranfkIAGk
187 170 186 mpbird φψf:IWJkIWDfkxXAfkGktXranfxXkIAtkIGk
188 funmpt FunxXkIA
189 3 mptexd φkIAV
190 189 ralrimivw φxXkIAV
191 190 ad2antrr φψf:IWJkIWDfkxXAfkGkxXkIAV
192 dmmptg xXkIAVdomxXkIA=X
193 191 192 syl φψf:IWJkIWDfkxXAfkGkdomxXkIA=X
194 127 193 sseqtrrid φψf:IWJkIWDfkxXAfkGkXranfdomxXkIA
195 funimass4 FunxXkIAXranfdomxXkIAxXkIAXranfkIGktXranfxXkIAtkIGk
196 188 194 195 sylancr φψf:IWJkIWDfkxXAfkGkxXkIAXranfkIGktXranfxXkIAtkIGk
197 187 196 mpbird φψf:IWJkIWDfkxXAfkGkxXkIAXranfkIGk
198 eleq2 z=XranfDzDXranf
199 imaeq2 z=XranfxXkIAz=xXkIAXranf
200 199 sseq1d z=XranfxXkIAzkIGkxXkIAXranfkIGk
201 198 200 anbi12d z=XranfDzxXkIAzkIGkDXranfxXkIAXranfkIGk
202 201 rspcev XranfJDXranfxXkIAXranfkIGkzJDzxXkIAzkIGk
203 92 102 197 202 syl12anc φψf:IWJkIWDfkxXAfkGkzJDzxXkIAzkIGk
204 72 203 exlimddv φψzJDzxXkIAzkIGk