Metamath Proof Explorer


Theorem sinccvglem

Description: ( ( sinx ) / x ) ~> 1 as (real) x ~> 0 . (Contributed by Paul Chapman, 10-Nov-2012) (Revised by Mario Carneiro, 21-May-2014)

Ref Expression
Hypotheses sinccvg.1 φF:0
sinccvg.2 φF0
sinccvg.3 G=x0sinxx
sinccvg.4 H=x1x23
sinccvg.5 φM
sinccvg.6 φkMFk<1
Assertion sinccvglem φGF1

Proof

Step Hyp Ref Expression
1 sinccvg.1 φF:0
2 sinccvg.2 φF0
3 sinccvg.3 G=x0sinxx
4 sinccvg.4 H=x1x23
5 sinccvg.5 φM
6 sinccvg.6 φkMFk<1
7 eqid M=M
8 5 nnzd φM
9 4 funmpt2 FunH
10 nnex V
11 fex F:0VFV
12 1 10 11 sylancl φFV
13 cofunexg FunHFVHFV
14 9 12 13 sylancr φHFV
15 1 adantr φkMF:0
16 eluznn MkMk
17 5 16 sylan φkMk
18 15 17 ffvelcdmd φkMFk0
19 eldifsn Fk0FkFk0
20 18 19 sylib φkMFkFk0
21 20 simpld φkMFk
22 21 recnd φkMFk
23 ax-1cn 1
24 sqcl xx2
25 3cn 3
26 3ne0 30
27 divcl x2330x23
28 25 26 27 mp3an23 x2x23
29 24 28 syl xx23
30 subcl 1x231x23
31 23 29 30 sylancr x1x23
32 4 31 fmpti H:
33 eqid TopOpenfld=TopOpenfld
34 33 cnfldtopon TopOpenfldTopOn
35 34 a1i TopOpenfldTopOn
36 1cnd 1
37 35 35 36 cnmptc x1TopOpenfldCnTopOpenfld
38 33 sqcn xx2TopOpenfldCnTopOpenfld
39 38 a1i xx2TopOpenfldCnTopOpenfld
40 33 divccn 330yy3TopOpenfldCnTopOpenfld
41 25 26 40 mp2an yy3TopOpenfldCnTopOpenfld
42 41 a1i yy3TopOpenfldCnTopOpenfld
43 oveq1 y=x2y3=x23
44 35 39 35 42 43 cnmpt11 xx23TopOpenfldCnTopOpenfld
45 33 subcn TopOpenfld×tTopOpenfldCnTopOpenfld
46 45 a1i TopOpenfld×tTopOpenfldCnTopOpenfld
47 35 37 44 46 cnmpt12f x1x23TopOpenfldCnTopOpenfld
48 47 mptru x1x23TopOpenfldCnTopOpenfld
49 33 cncfcn1 cn=TopOpenfldCnTopOpenfld
50 48 4 49 3eltr4i H:cn
51 cncfi H:cn0y+z+ww0<zHwH0<y
52 50 51 mp3an1 0y+z+ww0<zHwH0<y
53 fvco3 F:0kHFk=HFk
54 1 53 sylan φkHFk=HFk
55 17 54 syldan φkMHFk=HFk
56 7 2 14 8 22 32 52 55 climcn1lem φHFH0
57 0cn 0
58 sq0i x=0x2=0
59 58 oveq1d x=0x23=03
60 25 26 div0i 03=0
61 59 60 eqtrdi x=0x23=0
62 61 oveq2d x=01x23=10
63 1m0e1 10=1
64 62 63 eqtrdi x=01x23=1
65 1ex 1V
66 64 4 65 fvmpt 0H0=1
67 57 66 ax-mp H0=1
68 56 67 breqtrdi φHF1
69 3 funmpt2 FunG
70 cofunexg FunGFVGFV
71 69 12 70 sylancr φGFV
72 oveq1 x=Fkx2=Fk2
73 72 oveq1d x=Fkx23=Fk23
74 73 oveq2d x=Fk1x23=1Fk23
75 ovex 1Fk23V
76 74 4 75 fvmpt FkHFk=1Fk23
77 22 76 syl φkMHFk=1Fk23
78 55 77 eqtrd φkMHFk=1Fk23
79 1re 1
80 21 resqcld φkMFk2
81 3nn 3
82 nndivre Fk23Fk23
83 80 81 82 sylancl φkMFk23
84 resubcl 1Fk231Fk23
85 79 83 84 sylancr φkM1Fk23
86 78 85 eqeltrd φkMHFk
87 fvco3 F:0kGFk=GFk
88 1 87 sylan φkGFk=GFk
89 17 88 syldan φkMGFk=GFk
90 fveq2 x=Fksinx=sinFk
91 id x=Fkx=Fk
92 90 91 oveq12d x=Fksinxx=sinFkFk
93 ovex sinFkFkV
94 92 3 93 fvmpt Fk0GFk=sinFkFk
95 18 94 syl φkMGFk=sinFkFk
96 89 95 eqtrd φkMGFk=sinFkFk
97 21 resincld φkMsinFk
98 20 simprd φkMFk0
99 97 21 98 redivcld φkMsinFkFk
100 96 99 eqeltrd φkMGFk
101 1cnd φkM1
102 83 recnd φkMFk23
103 22 abscld φkMFk
104 103 recnd φkMFk
105 101 102 104 subdird φkM1Fk23Fk=1FkFk23Fk
106 104 mullidd φkM1Fk=Fk
107 df-3 3=2+1
108 107 oveq2i Fk3=Fk2+1
109 2nn0 20
110 expp1 Fk20Fk2+1=Fk2Fk
111 104 109 110 sylancl φkMFk2+1=Fk2Fk
112 absresq FkFk2=Fk2
113 21 112 syl φkMFk2=Fk2
114 113 oveq1d φkMFk2Fk=Fk2Fk
115 111 114 eqtrd φkMFk2+1=Fk2Fk
116 108 115 eqtrid φkMFk3=Fk2Fk
117 116 oveq1d φkMFk33=Fk2Fk3
118 80 recnd φkMFk2
119 25 a1i φkM3
120 26 a1i φkM30
121 118 104 119 120 div23d φkMFk2Fk3=Fk23Fk
122 117 121 eqtr2d φkMFk23Fk=Fk33
123 106 122 oveq12d φkM1FkFk23Fk=FkFk33
124 105 123 eqtrd φkM1Fk23Fk=FkFk33
125 22 98 absrpcld φkMFk+
126 125 rpgt0d φkM0<Fk
127 ltle Fk1Fk<1Fk1
128 103 79 127 sylancl φkMFk<1Fk1
129 6 128 mpd φkMFk1
130 0xr 0*
131 elioc2 0*1Fk01Fk0<FkFk1
132 130 79 131 mp2an Fk01Fk0<FkFk1
133 103 126 129 132 syl3anbrc φkMFk01
134 sin01bnd Fk01FkFk33<sinFksinFk<Fk
135 133 134 syl φkMFkFk33<sinFksinFk<Fk
136 135 simpld φkMFkFk33<sinFk
137 124 136 eqbrtrd φkM1Fk23Fk<sinFk
138 103 resincld φkMsinFk
139 85 138 125 ltmuldivd φkM1Fk23Fk<sinFk1Fk23<sinFkFk
140 137 139 mpbid φkM1Fk23<sinFkFk
141 fveq2 Fk=FksinFk=sinFk
142 id Fk=FkFk=Fk
143 141 142 oveq12d Fk=FksinFkFk=sinFkFk
144 143 a1i φkMFk=FksinFkFk=sinFkFk
145 sinneg FksinFk=sinFk
146 22 145 syl φkMsinFk=sinFk
147 146 oveq1d φkMsinFkFk=sinFkFk
148 97 recnd φkMsinFk
149 148 22 98 div2negd φkMsinFkFk=sinFkFk
150 147 149 eqtrd φkMsinFkFk=sinFkFk
151 fveq2 Fk=FksinFk=sinFk
152 id Fk=FkFk=Fk
153 151 152 oveq12d Fk=FksinFkFk=sinFkFk
154 153 eqeq1d Fk=FksinFkFk=sinFkFksinFkFk=sinFkFk
155 150 154 syl5ibrcom φkMFk=FksinFkFk=sinFkFk
156 21 absord φkMFk=FkFk=Fk
157 144 155 156 mpjaod φkMsinFkFk=sinFkFk
158 140 157 breqtrd φkM1Fk23<sinFkFk
159 85 99 158 ltled φkM1Fk23sinFkFk
160 159 78 96 3brtr4d φkMHFkGFk
161 79 a1i φkM1
162 135 simprd φkMsinFk<Fk
163 104 mulridd φkMFk1=Fk
164 162 163 breqtrrd φkMsinFk<Fk1
165 138 161 125 ltdivmuld φkMsinFkFk<1sinFk<Fk1
166 164 165 mpbird φkMsinFkFk<1
167 157 166 eqbrtrrd φkMsinFkFk<1
168 99 161 167 ltled φkMsinFkFk1
169 96 168 eqbrtrd φkMGFk1
170 7 8 68 71 86 100 160 169 climsqz φGF1