Metamath Proof Explorer


Theorem smfmullem4

Description: The multiplication of two sigma-measurable functions is measurable. Proposition 121E (d) of Fremlin1 p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfmullem4.x x φ
smfmullem4.s φ S SAlg
smfmullem4.a φ A V
smfmullem4.b φ x A B
smfmullem4.d φ x C D
smfmullem4.m φ x A B SMblFn S
smfmullem4.n φ x C D SMblFn S
smfmullem4.r φ R
smfmullem4.k K = q 0 3 | u q 0 q 1 v q 2 q 3 u v < R
smfmullem4.e E = q K x A C | B q 0 q 1 D q 2 q 3
Assertion smfmullem4 φ x A C | B D < R S 𝑡 A C

Proof

Step Hyp Ref Expression
1 smfmullem4.x x φ
2 smfmullem4.s φ S SAlg
3 smfmullem4.a φ A V
4 smfmullem4.b φ x A B
5 smfmullem4.d φ x C D
6 smfmullem4.m φ x A B SMblFn S
7 smfmullem4.n φ x C D SMblFn S
8 smfmullem4.r φ R
9 smfmullem4.k K = q 0 3 | u q 0 q 1 v q 2 q 3 u v < R
10 smfmullem4.e E = q K x A C | B q 0 q 1 D q 2 q 3
11 8 3ad2ant1 φ x A C B D < R R
12 inss1 A C A
13 12 a1i φ A C A
14 13 sselda φ x A C x A
15 14 4 syldan φ x A C B
16 15 3adant3 φ x A C B D < R B
17 elinel2 x A C x C
18 17 adantl φ x A C x C
19 18 5 syldan φ x A C D
20 19 3adant3 φ x A C B D < R D
21 simp3 φ x A C B D < R B D < R
22 eqid R B D 1 + B + D = R B D 1 + B + D
23 eqid if 1 R B D 1 + B + D 1 R B D 1 + B + D = if 1 R B D 1 + B + D 1 R B D 1 + B + D
24 11 9 16 20 21 22 23 smfmullem3 φ x A C B D < R q K B q 0 q 1 D q 2 q 3
25 rabid x x A C | B q 0 q 1 D q 2 q 3 x A C B q 0 q 1 D q 2 q 3
26 25 bicomi x A C B q 0 q 1 D q 2 q 3 x x A C | B q 0 q 1 D q 2 q 3
27 26 biimpi x A C B q 0 q 1 D q 2 q 3 x x A C | B q 0 q 1 D q 2 q 3
28 27 adantll φ x A C B q 0 q 1 D q 2 q 3 x x A C | B q 0 q 1 D q 2 q 3
29 28 adantlr φ x A C q K B q 0 q 1 D q 2 q 3 x x A C | B q 0 q 1 D q 2 q 3
30 10 a1i φ E = q K x A C | B q 0 q 1 D q 2 q 3
31 inrab x A C | B q 0 q 1 x A C | D q 2 q 3 = x A C | B q 0 q 1 D q 2 q 3
32 3 13 ssexd φ A C V
33 eqid S 𝑡 A C = S 𝑡 A C
34 2 32 33 subsalsal φ S 𝑡 A C SAlg
35 34 adantr φ q K S 𝑡 A C SAlg
36 nfv x q K
37 1 36 nfan x φ q K
38 2 adantr φ q K S SAlg
39 32 adantr φ q K A C V
40 15 adantlr φ q K x A C B
41 2 6 13 sssmfmpt φ x A C B SMblFn S
42 41 adantr φ q K x A C B SMblFn S
43 ssrab2 q 0 3 | u q 0 q 1 v q 2 q 3 u v < R 0 3
44 9 43 eqsstri K 0 3
45 reex V
46 qssre
47 mapss V 0 3 0 3
48 45 46 47 mp2an 0 3 0 3
49 44 48 sstri K 0 3
50 id q K q K
51 49 50 sseldi q K q 0 3
52 45 a1i q K V
53 ovexd q K 0 3 V
54 52 53 elmapd q K q 0 3 q : 0 3
55 51 54 mpbid q K q : 0 3
56 0z 0
57 3z 3
58 0re 0
59 3re 3
60 3pos 0 < 3
61 58 59 60 ltleii 0 3
62 56 57 61 3pm3.2i 0 3 0 3
63 eluz2 3 0 0 3 0 3
64 62 63 mpbir 3 0
65 eluzfz1 3 0 0 0 3
66 64 65 ax-mp 0 0 3
67 66 a1i q K 0 0 3
68 55 67 ffvelrnd q K q 0
69 68 adantl φ q K q 0
70 69 rexrd φ q K q 0 *
71 0le1 0 1
72 1re 1
73 1lt3 1 < 3
74 72 59 73 ltleii 1 3
75 71 74 pm3.2i 0 1 1 3
76 1z 1
77 elfz 1 0 3 1 0 3 0 1 1 3
78 76 56 57 77 mp3an 1 0 3 0 1 1 3
79 75 78 mpbir 1 0 3
80 79 a1i q K 1 0 3
81 55 80 ffvelrnd q K q 1
82 81 adantl φ q K q 1
83 82 rexrd φ q K q 1 *
84 37 38 39 40 42 70 83 smfpimioompt φ q K x A C | B q 0 q 1 S 𝑡 A C
85 19 adantlr φ q K x A C D
86 1 18 ssdf φ A C C
87 2 7 86 sssmfmpt φ x A C D SMblFn S
88 87 adantr φ q K x A C D SMblFn S
89 0le2 0 2
90 2re 2
91 2lt3 2 < 3
92 90 59 91 ltleii 2 3
93 89 92 pm3.2i 0 2 2 3
94 2z 2
95 elfz 2 0 3 2 0 3 0 2 2 3
96 94 56 57 95 mp3an 2 0 3 0 2 2 3
97 93 96 mpbir 2 0 3
98 97 a1i q K 2 0 3
99 55 98 ffvelrnd q K q 2
100 99 adantl φ q K q 2
101 100 rexrd φ q K q 2 *
102 eluzfz2 3 0 3 0 3
103 64 102 ax-mp 3 0 3
104 103 a1i q K 3 0 3
105 55 104 ffvelrnd q K q 3
106 105 adantl φ q K q 3
107 106 rexrd φ q K q 3 *
108 37 38 39 85 88 101 107 smfpimioompt φ q K x A C | D q 2 q 3 S 𝑡 A C
109 35 84 108 salincld φ q K x A C | B q 0 q 1 x A C | D q 2 q 3 S 𝑡 A C
110 31 109 eqeltrrid φ q K x A C | B q 0 q 1 D q 2 q 3 S 𝑡 A C
111 110 elexd φ q K x A C | B q 0 q 1 D q 2 q 3 V
112 30 111 fvmpt2d φ q K E q = x A C | B q 0 q 1 D q 2 q 3
113 112 eqcomd φ q K x A C | B q 0 q 1 D q 2 q 3 = E q
114 113 adantlr φ x A C q K x A C | B q 0 q 1 D q 2 q 3 = E q
115 114 adantr φ x A C q K B q 0 q 1 D q 2 q 3 x A C | B q 0 q 1 D q 2 q 3 = E q
116 29 115 eleqtrd φ x A C q K B q 0 q 1 D q 2 q 3 x E q
117 116 ex φ x A C q K B q 0 q 1 D q 2 q 3 x E q
118 117 3adantl3 φ x A C B D < R q K B q 0 q 1 D q 2 q 3 x E q
119 118 reximdva φ x A C B D < R q K B q 0 q 1 D q 2 q 3 q K x E q
120 24 119 mpd φ x A C B D < R q K x E q
121 eliun x q K E q q K x E q
122 120 121 sylibr φ x A C B D < R x q K E q
123 122 3exp φ x A C B D < R x q K E q
124 1 123 ralrimi φ x A C B D < R x q K E q
125 36 nfci _ x K
126 nfrab1 _ x x A C | B q 0 q 1 D q 2 q 3
127 125 126 nfmpt _ x q K x A C | B q 0 q 1 D q 2 q 3
128 10 127 nfcxfr _ x E
129 nfcv _ x q
130 128 129 nffv _ x E q
131 125 130 nfiun _ x q K E q
132 131 rabssf x A C | B D < R q K E q x A C B D < R x q K E q
133 124 132 sylibr φ x A C | B D < R q K E q
134 ssrab2 x A C | B q 0 q 1 D q 2 q 3 A C
135 112 134 eqsstrdi φ q K E q A C
136 simpr φ q K x E q x E q
137 112 adantr φ q K x E q E q = x A C | B q 0 q 1 D q 2 q 3
138 136 137 eleqtrd φ q K x E q x x A C | B q 0 q 1 D q 2 q 3
139 rabidim2 x x A C | B q 0 q 1 D q 2 q 3 B q 0 q 1 D q 2 q 3
140 138 139 syl φ q K x E q B q 0 q 1 D q 2 q 3
141 140 simprd φ q K x E q D q 2 q 3
142 140 simpld φ q K x E q B q 0 q 1
143 50 9 eleqtrdi q K q q 0 3 | u q 0 q 1 v q 2 q 3 u v < R
144 rabidim2 q q 0 3 | u q 0 q 1 v q 2 q 3 u v < R u q 0 q 1 v q 2 q 3 u v < R
145 143 144 syl q K u q 0 q 1 v q 2 q 3 u v < R
146 145 ad2antlr φ q K x E q u q 0 q 1 v q 2 q 3 u v < R
147 oveq1 u = B u v = B v
148 147 breq1d u = B u v < R B v < R
149 148 ralbidv u = B v q 2 q 3 u v < R v q 2 q 3 B v < R
150 149 rspcva B q 0 q 1 u q 0 q 1 v q 2 q 3 u v < R v q 2 q 3 B v < R
151 142 146 150 syl2anc φ q K x E q v q 2 q 3 B v < R
152 oveq2 v = D B v = B D
153 152 breq1d v = D B v < R B D < R
154 153 rspcva D q 2 q 3 v q 2 q 3 B v < R B D < R
155 141 151 154 syl2anc φ q K x E q B D < R
156 155 ex φ q K x E q B D < R
157 37 156 ralrimi φ q K x E q B D < R
158 135 157 jca φ q K E q A C x E q B D < R
159 nfcv _ x A C
160 130 159 ssrabf E q x A C | B D < R E q A C x E q B D < R
161 158 160 sylibr φ q K E q x A C | B D < R
162 161 iunssd φ q K E q x A C | B D < R
163 133 162 eqssd φ x A C | B D < R = q K E q
164 ovex 0 3 V
165 ssdomg 0 3 V K 0 3 K 0 3
166 164 165 ax-mp K 0 3 K 0 3
167 44 166 ax-mp K 0 3
168 qct ω
169 168 a1i ω
170 fzfid 0 3 Fin
171 169 170 mpct 0 3 ω
172 171 mptru 0 3 ω
173 domtr K 0 3 0 3 ω K ω
174 167 172 173 mp2an K ω
175 174 a1i φ K ω
176 110 10 fmptd φ E : K S 𝑡 A C
177 176 ffvelrnda φ q K E q S 𝑡 A C
178 34 175 177 saliuncl φ q K E q S 𝑡 A C
179 163 178 eqeltrd φ x A C | B D < R S 𝑡 A C