Metamath Proof Explorer


Theorem smfresal

Description: Given a sigma-measurable function, the subsets of RR whose preimage is in the sigma-algebra induced by the function's domain, form a sigma-algebra. First part of the proof of Proposition 121E (f) of Fremlin1 p. 38 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfresal.s φSSAlg
smfresal.f φFSMblFnS
smfresal.d D=domF
smfresal.t T=e𝒫|F-1eS𝑡D
Assertion smfresal φTSAlg

Proof

Step Hyp Ref Expression
1 smfresal.s φSSAlg
2 smfresal.f φFSMblFnS
3 smfresal.d D=domF
4 smfresal.t T=e𝒫|F-1eS𝑡D
5 reex V
6 5 pwex 𝒫V
7 4 6 rabex2 TV
8 7 a1i φTV
9 0elpw 𝒫
10 9 a1i φ𝒫
11 ima0 F-1=
12 11 a1i φF-1=
13 1 uniexd φSV
14 1 2 3 smfdmss φDS
15 13 14 ssexd φDV
16 eqid S𝑡D=S𝑡D
17 1 15 16 subsalsal φS𝑡DSAlg
18 17 0sald φS𝑡D
19 12 18 eqeltrd φF-1S𝑡D
20 10 19 jca φ𝒫F-1S𝑡D
21 imaeq2 e=F-1e=F-1
22 21 eleq1d e=F-1eS𝑡DF-1S𝑡D
23 22 4 elrab2 T𝒫F-1S𝑡D
24 20 23 sylibr φT
25 eqid T=T
26 nfv yφ
27 nfcv _ey
28 nfrab1 _ee𝒫|F-1eS𝑡D
29 4 28 nfcxfr _eT
30 27 29 eluni2f yTeTye
31 30 biimpi yTeTye
32 31 adantl φyTeTye
33 nfv eφ
34 29 nfuni _eT
35 27 34 nfel eyT
36 33 35 nfan eφyT
37 27 nfel1 ey
38 4 eleq2i eTee𝒫|F-1eS𝑡D
39 38 biimpi eTee𝒫|F-1eS𝑡D
40 rabidim1 ee𝒫|F-1eS𝑡De𝒫
41 39 40 syl eTe𝒫
42 elpwi e𝒫e
43 41 42 syl eTe
44 43 adantr eTyee
45 simpr eTyeye
46 44 45 sseldd eTyey
47 46 ex eTyey
48 47 a1i φyTeTyey
49 36 37 48 rexlimd φyTeTyey
50 32 49 mpd φyTy
51 50 ex φyTy
52 ovexd φy1y+1V
53 ioossre y1y+1
54 53 a1i φy1y+1
55 52 54 elpwd φy1y+1𝒫
56 55 adantr φyy1y+1𝒫
57 1 2 3 smff φF:D
58 57 ffnd φFFnD
59 fncnvima2 FFnDF-1y1y+1=xD|Fxy1y+1
60 58 59 syl φF-1y1y+1=xD|Fxy1y+1
61 60 adantr φyF-1y1y+1=xD|Fxy1y+1
62 nfv xφy
63 1 adantr φySSAlg
64 15 adantr φyDV
65 57 adantr φxDF:D
66 simpr φxDxD
67 65 66 ffvelcdmd φxDFx
68 67 adantlr φyxDFx
69 57 feqmptd φF=xDFx
70 69 eqcomd φxDFx=F
71 70 2 eqeltrd φxDFxSMblFnS
72 71 adantr φyxDFxSMblFnS
73 peano2rem yy1
74 73 rexrd yy1*
75 74 adantl φyy1*
76 peano2re yy+1
77 76 rexrd yy+1*
78 77 adantl φyy+1*
79 62 63 64 68 72 75 78 smfpimioompt φyxD|Fxy1y+1S𝑡D
80 61 79 eqeltrd φyF-1y1y+1S𝑡D
81 56 80 jca φyy1y+1𝒫F-1y1y+1S𝑡D
82 imaeq2 e=y1y+1F-1e=F-1y1y+1
83 82 eleq1d e=y1y+1F-1eS𝑡DF-1y1y+1S𝑡D
84 83 4 elrab2 y1y+1Ty1y+1𝒫F-1y1y+1S𝑡D
85 81 84 sylibr φyy1y+1T
86 id yy
87 ltm1 yy1<y
88 ltp1 yy<y+1
89 74 77 86 87 88 eliood yyy1y+1
90 89 adantl φyyy1y+1
91 nfv eyy1y+1
92 nfcv _ey1y+1
93 eleq2 e=y1y+1yeyy1y+1
94 91 92 29 93 rspcef y1y+1Tyy1y+1eTye
95 85 90 94 syl2anc φyeTye
96 95 30 sylibr φyyT
97 96 ex φyyT
98 51 97 impbid φyTy
99 26 98 alrimi φyyTy
100 dfcleq T=yyTy
101 99 100 sylibr φT=
102 101 difeq1d φTx=x
103 102 adantr φxTTx=x
104 difss x
105 5 104 ssexi xV
106 elpwg xVx𝒫x
107 105 106 ax-mp x𝒫x
108 104 107 mpbir x𝒫
109 108 a1i φxTx𝒫
110 57 ffund φFunF
111 difpreima FunFF-1x=F-1F-1x
112 110 111 syl φF-1x=F-1F-1x
113 fimacnv F:DF-1=D
114 57 113 syl φF-1=D
115 1 14 restuni4 φS𝑡D=D
116 114 115 eqtr4d φF-1=S𝑡D
117 116 difeq1d φF-1F-1x=S𝑡DF-1x
118 112 117 eqtrd φF-1x=S𝑡DF-1x
119 118 adantr φxTF-1x=S𝑡DF-1x
120 17 adantr φxTS𝑡DSAlg
121 imaeq2 e=xF-1e=F-1x
122 121 eleq1d e=xF-1eS𝑡DF-1xS𝑡D
123 122 4 elrab2 xTx𝒫F-1xS𝑡D
124 123 biimpi xTx𝒫F-1xS𝑡D
125 124 simprd xTF-1xS𝑡D
126 125 adantl φxTF-1xS𝑡D
127 120 126 saldifcld φxTS𝑡DF-1xS𝑡D
128 119 127 eqeltrd φxTF-1xS𝑡D
129 109 128 jca φxTx𝒫F-1xS𝑡D
130 imaeq2 e=xF-1e=F-1x
131 130 eleq1d e=xF-1eS𝑡DF-1xS𝑡D
132 131 4 elrab2 xTx𝒫F-1xS𝑡D
133 129 132 sylibr φxTxT
134 103 133 eqeltrd φxTTxT
135 nnex V
136 fvex gnV
137 135 136 iunex ngnV
138 137 a1i g:TngnV
139 ffvelcdm g:TngnT
140 4 eleq2i gnTgne𝒫|F-1eS𝑡D
141 140 biimpi gnTgne𝒫|F-1eS𝑡D
142 elrabi gne𝒫|F-1eS𝑡Dgn𝒫
143 141 142 syl gnTgn𝒫
144 elpwi gn𝒫gn
145 143 144 syl gnTgn
146 139 145 syl g:Tngn
147 146 iunssd g:Tngn
148 138 147 elpwd g:Tngn𝒫
149 148 adantl φg:Tngn𝒫
150 imaiun F-1ngn=nF-1gn
151 150 a1i φg:TF-1ngn=nF-1gn
152 17 adantr φg:TS𝑡DSAlg
153 nnct ω
154 153 a1i φg:Tω
155 imaeq2 e=gnF-1e=F-1gn
156 155 eleq1d e=gnF-1eS𝑡DF-1gnS𝑡D
157 156 4 elrab2 gnTgn𝒫F-1gnS𝑡D
158 157 biimpi gnTgn𝒫F-1gnS𝑡D
159 158 simprd gnTF-1gnS𝑡D
160 139 159 syl g:TnF-1gnS𝑡D
161 160 adantll φg:TnF-1gnS𝑡D
162 152 154 161 saliuncl φg:TnF-1gnS𝑡D
163 151 162 eqeltrd φg:TF-1ngnS𝑡D
164 149 163 jca φg:Tngn𝒫F-1ngnS𝑡D
165 imaeq2 e=ngnF-1e=F-1ngn
166 165 eleq1d e=ngnF-1eS𝑡DF-1ngnS𝑡D
167 166 4 elrab2 ngnTngn𝒫F-1ngnS𝑡D
168 164 167 sylibr φg:TngnT
169 8 24 25 134 168 issalnnd φTSAlg