Metamath Proof Explorer


Theorem supcvg

Description: Extract a sequence f in X such that the image of the points in the bounded set A converges to the supremum S of the set. Similar to Equation 4 of Kreyszig p. 144. The proof uses countable choice ax-cc . (Contributed by Mario Carneiro, 15-Feb-2013) (Proof shortened by Mario Carneiro, 26-Apr-2014)

Ref Expression
Hypotheses supcvg.1 XV
supcvg.2 S=supA<
supcvg.3 R=nS1n
supcvg.4 φX
supcvg.5 φF:XontoA
supcvg.6 φA
supcvg.7 φxyAyx
Assertion supcvg φff:XFfS

Proof

Step Hyp Ref Expression
1 supcvg.1 XV
2 supcvg.2 S=supA<
3 supcvg.3 R=nS1n
4 supcvg.4 φX
5 supcvg.5 φF:XontoA
6 supcvg.6 φA
7 supcvg.7 φxyAyx
8 oveq2 n=k1n=1k
9 8 oveq2d n=kS1n=S1k
10 ovex S1kV
11 9 3 10 fvmpt kRk=S1k
12 11 adantl φkRk=S1k
13 fof F:XontoAF:XA
14 5 13 syl φF:XA
15 feq3 A=F:XAF:X
16 14 15 syl5ibcom φA=F:X
17 f00 F:XF=X=
18 17 simprbi F:XX=
19 16 18 syl6 φA=X=
20 19 necon3d φXA
21 4 20 mpd φA
22 6 21 7 suprcld φsupA<
23 2 22 eqeltrid φS
24 nnrp kk+
25 24 rpreccld k1k+
26 ltsubrp S1k+S1k<S
27 23 25 26 syl2an φkS1k<S
28 12 27 eqbrtrd φkRk<S
29 28 2 breqtrdi φkRk<supA<
30 6 21 7 3jca φAAxyAyx
31 nnrecre n1n
32 resubcl S1nS1n
33 23 31 32 syl2an φnS1n
34 33 3 fmptd φR:
35 34 ffvelcdmda φkRk
36 suprlub AAxyAyxRkRk<supA<zARk<z
37 30 35 36 syl2an2r φkRk<supA<zARk<z
38 29 37 mpbid φkzARk<z
39 6 adantr φkA
40 39 sselda φkzAz
41 ltle RkzRk<zRkz
42 35 40 41 syl2an2r φkzARk<zRkz
43 42 reximdva φkzARk<zzARkz
44 38 43 mpd φkzARkz
45 forn F:XontoAranF=A
46 5 45 syl φranF=A
47 46 rexeqdv φzranFRkzzARkz
48 ffn F:XAFFnX
49 breq2 z=FxRkzRkFx
50 49 rexrn FFnXzranFRkzxXRkFx
51 14 48 50 3syl φzranFRkzxXRkFx
52 47 51 bitr3d φzARkzxXRkFx
53 52 adantr φkzARkzxXRkFx
54 44 53 mpbid φkxXRkFx
55 54 ralrimiva φkxXRkFx
56 nnenom ω
57 fveq2 x=fkFx=Ffk
58 57 breq2d x=fkRkFxRkFfk
59 1 56 58 axcc4 kxXRkFxff:XkRkFfk
60 55 59 syl φff:XkRkFfk
61 nnuz =1
62 1zzd φf:XkRkFfk1
63 1zzd φ1
64 23 recnd φS
65 1z 1
66 61 eqimss2i 1
67 nnex V
68 66 67 climconst2 S1×SS
69 64 65 68 sylancl φ×SS
70 67 mptex nS1nV
71 3 70 eqeltri RV
72 71 a1i φRV
73 ax-1cn 1
74 divcnv 1n1n0
75 73 74 mp1i φn1n0
76 fvconst2g Sk×Sk=S
77 23 76 sylan φk×Sk=S
78 64 adantr φkS
79 77 78 eqeltrd φk×Sk
80 eqid n1n=n1n
81 ovex 1kV
82 8 80 81 fvmpt kn1nk=1k
83 82 adantl φkn1nk=1k
84 nnrecre k1k
85 84 recnd k1k
86 85 adantl φk1k
87 83 86 eqeltrd φkn1nk
88 77 83 oveq12d φk×Skn1nk=S1k
89 12 88 eqtr4d φkRk=×Skn1nk
90 61 63 69 72 75 79 87 89 climsub φRS0
91 64 subid1d φS0=S
92 90 91 breqtrd φRS
93 92 ad2antrr φf:XkRkFfkRS
94 14 ad2antrr φf:XkRkFfkF:XA
95 fex F:XAXVFV
96 94 1 95 sylancl φf:XkRkFfkFV
97 vex fV
98 coexg FVfVFfV
99 96 97 98 sylancl φf:XkRkFfkFfV
100 34 ad2antrr φf:XkRkFfkR:
101 100 ffvelcdmda φf:XkRkFfkmRm
102 14 6 fssd φF:X
103 fco F:Xf:XFf:
104 102 103 sylan φf:XFf:
105 104 adantr φf:XkRkFfkFf:
106 105 ffvelcdmda φf:XkRkFfkmFfm
107 fveq2 k=mRk=Rm
108 2fveq3 k=mFfk=Ffm
109 107 108 breq12d k=mRkFfkRmFfm
110 109 rspccva kRkFfkmRmFfm
111 110 adantll φf:XkRkFfkmRmFfm
112 simplr φf:XkRkFfkf:X
113 fvco3 f:XmFfm=Ffm
114 112 113 sylan φf:XkRkFfkmFfm=Ffm
115 111 114 breqtrrd φf:XkRkFfkmRmFfm
116 30 ad3antrrr φf:XkRkFfkmAAxyAyx
117 112 ffvelcdmda φf:XkRkFfkmfmX
118 94 ffvelcdmda φf:XkRkFfkfmXFfmA
119 117 118 syldan φf:XkRkFfkmFfmA
120 suprub AAxyAyxFfmAFfmsupA<
121 116 119 120 syl2anc φf:XkRkFfkmFfmsupA<
122 121 2 breqtrrdi φf:XkRkFfkmFfmS
123 114 122 eqbrtrd φf:XkRkFfkmFfmS
124 61 62 93 99 101 106 115 123 climsqz φf:XkRkFfkFfS
125 124 ex φf:XkRkFfkFfS
126 125 imdistanda φf:XkRkFfkf:XFfS
127 126 eximdv φff:XkRkFfkff:XFfS
128 60 127 mpd φff:XFfS