| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sylow3.x |
|
| 2 |
|
sylow3.g |
|
| 3 |
|
sylow3.xf |
|
| 4 |
|
sylow3.p |
|
| 5 |
|
sylow3lem1.a |
|
| 6 |
|
sylow3lem1.d |
|
| 7 |
|
sylow3lem1.m |
|
| 8 |
|
ovex |
|
| 9 |
2 8
|
jctir |
|
| 10 |
1
|
fislw |
|
| 11 |
2 3 4 10
|
syl3anc |
|
| 12 |
11
|
biimpa |
|
| 13 |
12
|
adantrl |
|
| 14 |
13
|
simpld |
|
| 15 |
|
simprl |
|
| 16 |
|
eqid |
|
| 17 |
1 5 6 16
|
conjsubg |
|
| 18 |
14 15 17
|
syl2anc |
|
| 19 |
1 5 6 16
|
conjsubgen |
|
| 20 |
14 15 19
|
syl2anc |
|
| 21 |
3
|
adantr |
|
| 22 |
1
|
subgss |
|
| 23 |
14 22
|
syl |
|
| 24 |
21 23
|
ssfid |
|
| 25 |
1
|
subgss |
|
| 26 |
18 25
|
syl |
|
| 27 |
21 26
|
ssfid |
|
| 28 |
|
hashen |
|
| 29 |
24 27 28
|
syl2anc |
|
| 30 |
20 29
|
mpbird |
|
| 31 |
13
|
simprd |
|
| 32 |
30 31
|
eqtr3d |
|
| 33 |
1
|
fislw |
|
| 34 |
2 3 4 33
|
syl3anc |
|
| 35 |
34
|
adantr |
|
| 36 |
18 32 35
|
mpbir2and |
|
| 37 |
36
|
ralrimivva |
|
| 38 |
7
|
fmpo |
|
| 39 |
37 38
|
sylib |
|
| 40 |
2
|
adantr |
|
| 41 |
|
eqid |
|
| 42 |
1 41
|
grpidcl |
|
| 43 |
40 42
|
syl |
|
| 44 |
|
simpr |
|
| 45 |
|
simpr |
|
| 46 |
|
simpl |
|
| 47 |
46
|
oveq1d |
|
| 48 |
47 46
|
oveq12d |
|
| 49 |
45 48
|
mpteq12dv |
|
| 50 |
49
|
rneqd |
|
| 51 |
|
vex |
|
| 52 |
51
|
mptex |
|
| 53 |
52
|
rnex |
|
| 54 |
50 7 53
|
ovmpoa |
|
| 55 |
43 44 54
|
syl2anc |
|
| 56 |
2
|
ad2antrr |
|
| 57 |
|
slwsubg |
|
| 58 |
57
|
adantl |
|
| 59 |
1
|
subgss |
|
| 60 |
58 59
|
syl |
|
| 61 |
60
|
sselda |
|
| 62 |
1 5 41
|
grplid |
|
| 63 |
56 61 62
|
syl2anc |
|
| 64 |
63
|
oveq1d |
|
| 65 |
1 41 6
|
grpsubid1 |
|
| 66 |
56 61 65
|
syl2anc |
|
| 67 |
64 66
|
eqtrd |
|
| 68 |
67
|
mpteq2dva |
|
| 69 |
|
mptresid |
|
| 70 |
68 69
|
eqtr4di |
|
| 71 |
70
|
rneqd |
|
| 72 |
|
rnresi |
|
| 73 |
71 72
|
eqtrdi |
|
| 74 |
55 73
|
eqtrd |
|
| 75 |
|
ovex |
|
| 76 |
|
oveq2 |
|
| 77 |
76
|
oveq1d |
|
| 78 |
75 77
|
abrexco |
|
| 79 |
|
simprr |
|
| 80 |
|
simplr |
|
| 81 |
|
simpr |
|
| 82 |
|
simpl |
|
| 83 |
82
|
oveq1d |
|
| 84 |
83 82
|
oveq12d |
|
| 85 |
81 84
|
mpteq12dv |
|
| 86 |
85
|
rneqd |
|
| 87 |
51
|
mptex |
|
| 88 |
87
|
rnex |
|
| 89 |
86 7 88
|
ovmpoa |
|
| 90 |
79 80 89
|
syl2anc |
|
| 91 |
|
eqid |
|
| 92 |
91
|
rnmpt |
|
| 93 |
90 92
|
eqtrdi |
|
| 94 |
93
|
rexeqdv |
|
| 95 |
94
|
abbidv |
|
| 96 |
40
|
adantr |
|
| 97 |
96
|
adantr |
|
| 98 |
|
simprl |
|
| 99 |
1 5
|
grpcl |
|
| 100 |
96 98 79 99
|
syl3anc |
|
| 101 |
100
|
adantr |
|
| 102 |
61
|
adantlr |
|
| 103 |
1 5
|
grpcl |
|
| 104 |
97 101 102 103
|
syl3anc |
|
| 105 |
79
|
adantr |
|
| 106 |
98
|
adantr |
|
| 107 |
1 5 6
|
grpsubsub4 |
|
| 108 |
97 104 105 106 107
|
syl13anc |
|
| 109 |
1 5
|
grpass |
|
| 110 |
97 106 105 102 109
|
syl13anc |
|
| 111 |
110
|
oveq1d |
|
| 112 |
1 5
|
grpcl |
|
| 113 |
97 105 102 112
|
syl3anc |
|
| 114 |
1 5 6
|
grpaddsubass |
|
| 115 |
97 106 113 105 114
|
syl13anc |
|
| 116 |
111 115
|
eqtrd |
|
| 117 |
116
|
oveq1d |
|
| 118 |
108 117
|
eqtr3d |
|
| 119 |
118
|
eqeq2d |
|
| 120 |
119
|
rexbidva |
|
| 121 |
120
|
abbidv |
|
| 122 |
78 95 121
|
3eqtr4a |
|
| 123 |
|
eqid |
|
| 124 |
123
|
rnmpt |
|
| 125 |
|
eqid |
|
| 126 |
125
|
rnmpt |
|
| 127 |
122 124 126
|
3eqtr4g |
|
| 128 |
39
|
ad2antrr |
|
| 129 |
128 79 80
|
fovcdmd |
|
| 130 |
|
simpr |
|
| 131 |
|
simpl |
|
| 132 |
131
|
oveq1d |
|
| 133 |
132 131
|
oveq12d |
|
| 134 |
130 133
|
mpteq12dv |
|
| 135 |
|
oveq2 |
|
| 136 |
135
|
oveq1d |
|
| 137 |
136
|
cbvmptv |
|
| 138 |
134 137
|
eqtrdi |
|
| 139 |
138
|
rneqd |
|
| 140 |
|
ovex |
|
| 141 |
140
|
mptex |
|
| 142 |
141
|
rnex |
|
| 143 |
139 7 142
|
ovmpoa |
|
| 144 |
98 129 143
|
syl2anc |
|
| 145 |
|
simpr |
|
| 146 |
|
simpl |
|
| 147 |
146
|
oveq1d |
|
| 148 |
147 146
|
oveq12d |
|
| 149 |
145 148
|
mpteq12dv |
|
| 150 |
149
|
rneqd |
|
| 151 |
51
|
mptex |
|
| 152 |
151
|
rnex |
|
| 153 |
150 7 152
|
ovmpoa |
|
| 154 |
100 80 153
|
syl2anc |
|
| 155 |
127 144 154
|
3eqtr4rd |
|
| 156 |
155
|
ralrimivva |
|
| 157 |
74 156
|
jca |
|
| 158 |
157
|
ralrimiva |
|
| 159 |
39 158
|
jca |
|
| 160 |
1 5 41
|
isga |
|
| 161 |
9 159 160
|
sylanbrc |
|