Metamath Proof Explorer


Theorem sylow3lem1

Description: Lemma for sylow3 , first part. (Contributed by Mario Carneiro, 19-Jan-2015)

Ref Expression
Hypotheses sylow3.x X=BaseG
sylow3.g φGGrp
sylow3.xf φXFin
sylow3.p φP
sylow3lem1.a +˙=+G
sylow3lem1.d -˙=-G
sylow3lem1.m ˙=xX,yPpSylGranzyx+˙z-˙x
Assertion sylow3lem1 φ˙GGrpActPpSylG

Proof

Step Hyp Ref Expression
1 sylow3.x X=BaseG
2 sylow3.g φGGrp
3 sylow3.xf φXFin
4 sylow3.p φP
5 sylow3lem1.a +˙=+G
6 sylow3lem1.d -˙=-G
7 sylow3lem1.m ˙=xX,yPpSylGranzyx+˙z-˙x
8 ovex PpSylGV
9 2 8 jctir φGGrpPpSylGV
10 1 fislw GGrpXFinPyPpSylGySubGrpGy=PPpCntX
11 2 3 4 10 syl3anc φyPpSylGySubGrpGy=PPpCntX
12 11 biimpa φyPpSylGySubGrpGy=PPpCntX
13 12 adantrl φxXyPpSylGySubGrpGy=PPpCntX
14 13 simpld φxXyPpSylGySubGrpG
15 simprl φxXyPpSylGxX
16 eqid zyx+˙z-˙x=zyx+˙z-˙x
17 1 5 6 16 conjsubg ySubGrpGxXranzyx+˙z-˙xSubGrpG
18 14 15 17 syl2anc φxXyPpSylGranzyx+˙z-˙xSubGrpG
19 1 5 6 16 conjsubgen ySubGrpGxXyranzyx+˙z-˙x
20 14 15 19 syl2anc φxXyPpSylGyranzyx+˙z-˙x
21 3 adantr φxXyPpSylGXFin
22 1 subgss ySubGrpGyX
23 14 22 syl φxXyPpSylGyX
24 21 23 ssfid φxXyPpSylGyFin
25 1 subgss ranzyx+˙z-˙xSubGrpGranzyx+˙z-˙xX
26 18 25 syl φxXyPpSylGranzyx+˙z-˙xX
27 21 26 ssfid φxXyPpSylGranzyx+˙z-˙xFin
28 hashen yFinranzyx+˙z-˙xFiny=ranzyx+˙z-˙xyranzyx+˙z-˙x
29 24 27 28 syl2anc φxXyPpSylGy=ranzyx+˙z-˙xyranzyx+˙z-˙x
30 20 29 mpbird φxXyPpSylGy=ranzyx+˙z-˙x
31 13 simprd φxXyPpSylGy=PPpCntX
32 30 31 eqtr3d φxXyPpSylGranzyx+˙z-˙x=PPpCntX
33 1 fislw GGrpXFinPranzyx+˙z-˙xPpSylGranzyx+˙z-˙xSubGrpGranzyx+˙z-˙x=PPpCntX
34 2 3 4 33 syl3anc φranzyx+˙z-˙xPpSylGranzyx+˙z-˙xSubGrpGranzyx+˙z-˙x=PPpCntX
35 34 adantr φxXyPpSylGranzyx+˙z-˙xPpSylGranzyx+˙z-˙xSubGrpGranzyx+˙z-˙x=PPpCntX
36 18 32 35 mpbir2and φxXyPpSylGranzyx+˙z-˙xPpSylG
37 36 ralrimivva φxXyPpSylGranzyx+˙z-˙xPpSylG
38 7 fmpo xXyPpSylGranzyx+˙z-˙xPpSylG˙:X×PpSylGPpSylG
39 37 38 sylib φ˙:X×PpSylGPpSylG
40 2 adantr φaPpSylGGGrp
41 eqid 0G=0G
42 1 41 grpidcl GGrp0GX
43 40 42 syl φaPpSylG0GX
44 simpr φaPpSylGaPpSylG
45 simpr x=0Gy=ay=a
46 simpl x=0Gy=ax=0G
47 46 oveq1d x=0Gy=ax+˙z=0G+˙z
48 47 46 oveq12d x=0Gy=ax+˙z-˙x=0G+˙z-˙0G
49 45 48 mpteq12dv x=0Gy=azyx+˙z-˙x=za0G+˙z-˙0G
50 49 rneqd x=0Gy=aranzyx+˙z-˙x=ranza0G+˙z-˙0G
51 vex aV
52 51 mptex za0G+˙z-˙0GV
53 52 rnex ranza0G+˙z-˙0GV
54 50 7 53 ovmpoa 0GXaPpSylG0G˙a=ranza0G+˙z-˙0G
55 43 44 54 syl2anc φaPpSylG0G˙a=ranza0G+˙z-˙0G
56 2 ad2antrr φaPpSylGzaGGrp
57 slwsubg aPpSylGaSubGrpG
58 57 adantl φaPpSylGaSubGrpG
59 1 subgss aSubGrpGaX
60 58 59 syl φaPpSylGaX
61 60 sselda φaPpSylGzazX
62 1 5 41 grplid GGrpzX0G+˙z=z
63 56 61 62 syl2anc φaPpSylGza0G+˙z=z
64 63 oveq1d φaPpSylGza0G+˙z-˙0G=z-˙0G
65 1 41 6 grpsubid1 GGrpzXz-˙0G=z
66 56 61 65 syl2anc φaPpSylGzaz-˙0G=z
67 64 66 eqtrd φaPpSylGza0G+˙z-˙0G=z
68 67 mpteq2dva φaPpSylGza0G+˙z-˙0G=zaz
69 mptresid Ia=zaz
70 68 69 eqtr4di φaPpSylGza0G+˙z-˙0G=Ia
71 70 rneqd φaPpSylGranza0G+˙z-˙0G=ranIa
72 rnresi ranIa=a
73 71 72 eqtrdi φaPpSylGranza0G+˙z-˙0G=a
74 55 73 eqtrd φaPpSylG0G˙a=a
75 ovex c+˙z-˙cV
76 oveq2 w=c+˙z-˙cb+˙w=b+˙c+˙z-˙c
77 76 oveq1d w=c+˙z-˙cb+˙w-˙b=b+˙c+˙z-˙c-˙b
78 75 77 abrexco u|wv|zav=c+˙z-˙cu=b+˙w-˙b=u|zau=b+˙c+˙z-˙c-˙b
79 simprr φaPpSylGbXcXcX
80 simplr φaPpSylGbXcXaPpSylG
81 simpr x=cy=ay=a
82 simpl x=cy=ax=c
83 82 oveq1d x=cy=ax+˙z=c+˙z
84 83 82 oveq12d x=cy=ax+˙z-˙x=c+˙z-˙c
85 81 84 mpteq12dv x=cy=azyx+˙z-˙x=zac+˙z-˙c
86 85 rneqd x=cy=aranzyx+˙z-˙x=ranzac+˙z-˙c
87 51 mptex zac+˙z-˙cV
88 87 rnex ranzac+˙z-˙cV
89 86 7 88 ovmpoa cXaPpSylGc˙a=ranzac+˙z-˙c
90 79 80 89 syl2anc φaPpSylGbXcXc˙a=ranzac+˙z-˙c
91 eqid zac+˙z-˙c=zac+˙z-˙c
92 91 rnmpt ranzac+˙z-˙c=v|zav=c+˙z-˙c
93 90 92 eqtrdi φaPpSylGbXcXc˙a=v|zav=c+˙z-˙c
94 93 rexeqdv φaPpSylGbXcXwc˙au=b+˙w-˙bwv|zav=c+˙z-˙cu=b+˙w-˙b
95 94 abbidv φaPpSylGbXcXu|wc˙au=b+˙w-˙b=u|wv|zav=c+˙z-˙cu=b+˙w-˙b
96 40 adantr φaPpSylGbXcXGGrp
97 96 adantr φaPpSylGbXcXzaGGrp
98 simprl φaPpSylGbXcXbX
99 1 5 grpcl GGrpbXcXb+˙cX
100 96 98 79 99 syl3anc φaPpSylGbXcXb+˙cX
101 100 adantr φaPpSylGbXcXzab+˙cX
102 61 adantlr φaPpSylGbXcXzazX
103 1 5 grpcl GGrpb+˙cXzXb+˙c+˙zX
104 97 101 102 103 syl3anc φaPpSylGbXcXzab+˙c+˙zX
105 79 adantr φaPpSylGbXcXzacX
106 98 adantr φaPpSylGbXcXzabX
107 1 5 6 grpsubsub4 GGrpb+˙c+˙zXcXbXb+˙c+˙z-˙c-˙b=b+˙c+˙z-˙b+˙c
108 97 104 105 106 107 syl13anc φaPpSylGbXcXzab+˙c+˙z-˙c-˙b=b+˙c+˙z-˙b+˙c
109 1 5 grpass GGrpbXcXzXb+˙c+˙z=b+˙c+˙z
110 97 106 105 102 109 syl13anc φaPpSylGbXcXzab+˙c+˙z=b+˙c+˙z
111 110 oveq1d φaPpSylGbXcXzab+˙c+˙z-˙c=b+˙c+˙z-˙c
112 1 5 grpcl GGrpcXzXc+˙zX
113 97 105 102 112 syl3anc φaPpSylGbXcXzac+˙zX
114 1 5 6 grpaddsubass GGrpbXc+˙zXcXb+˙c+˙z-˙c=b+˙c+˙z-˙c
115 97 106 113 105 114 syl13anc φaPpSylGbXcXzab+˙c+˙z-˙c=b+˙c+˙z-˙c
116 111 115 eqtrd φaPpSylGbXcXzab+˙c+˙z-˙c=b+˙c+˙z-˙c
117 116 oveq1d φaPpSylGbXcXzab+˙c+˙z-˙c-˙b=b+˙c+˙z-˙c-˙b
118 108 117 eqtr3d φaPpSylGbXcXzab+˙c+˙z-˙b+˙c=b+˙c+˙z-˙c-˙b
119 118 eqeq2d φaPpSylGbXcXzau=b+˙c+˙z-˙b+˙cu=b+˙c+˙z-˙c-˙b
120 119 rexbidva φaPpSylGbXcXzau=b+˙c+˙z-˙b+˙czau=b+˙c+˙z-˙c-˙b
121 120 abbidv φaPpSylGbXcXu|zau=b+˙c+˙z-˙b+˙c=u|zau=b+˙c+˙z-˙c-˙b
122 78 95 121 3eqtr4a φaPpSylGbXcXu|wc˙au=b+˙w-˙b=u|zau=b+˙c+˙z-˙b+˙c
123 eqid wc˙ab+˙w-˙b=wc˙ab+˙w-˙b
124 123 rnmpt ranwc˙ab+˙w-˙b=u|wc˙au=b+˙w-˙b
125 eqid zab+˙c+˙z-˙b+˙c=zab+˙c+˙z-˙b+˙c
126 125 rnmpt ranzab+˙c+˙z-˙b+˙c=u|zau=b+˙c+˙z-˙b+˙c
127 122 124 126 3eqtr4g φaPpSylGbXcXranwc˙ab+˙w-˙b=ranzab+˙c+˙z-˙b+˙c
128 39 ad2antrr φaPpSylGbXcX˙:X×PpSylGPpSylG
129 128 79 80 fovcdmd φaPpSylGbXcXc˙aPpSylG
130 simpr x=by=c˙ay=c˙a
131 simpl x=by=c˙ax=b
132 131 oveq1d x=by=c˙ax+˙z=b+˙z
133 132 131 oveq12d x=by=c˙ax+˙z-˙x=b+˙z-˙b
134 130 133 mpteq12dv x=by=c˙azyx+˙z-˙x=zc˙ab+˙z-˙b
135 oveq2 z=wb+˙z=b+˙w
136 135 oveq1d z=wb+˙z-˙b=b+˙w-˙b
137 136 cbvmptv zc˙ab+˙z-˙b=wc˙ab+˙w-˙b
138 134 137 eqtrdi x=by=c˙azyx+˙z-˙x=wc˙ab+˙w-˙b
139 138 rneqd x=by=c˙aranzyx+˙z-˙x=ranwc˙ab+˙w-˙b
140 ovex c˙aV
141 140 mptex wc˙ab+˙w-˙bV
142 141 rnex ranwc˙ab+˙w-˙bV
143 139 7 142 ovmpoa bXc˙aPpSylGb˙c˙a=ranwc˙ab+˙w-˙b
144 98 129 143 syl2anc φaPpSylGbXcXb˙c˙a=ranwc˙ab+˙w-˙b
145 simpr x=b+˙cy=ay=a
146 simpl x=b+˙cy=ax=b+˙c
147 146 oveq1d x=b+˙cy=ax+˙z=b+˙c+˙z
148 147 146 oveq12d x=b+˙cy=ax+˙z-˙x=b+˙c+˙z-˙b+˙c
149 145 148 mpteq12dv x=b+˙cy=azyx+˙z-˙x=zab+˙c+˙z-˙b+˙c
150 149 rneqd x=b+˙cy=aranzyx+˙z-˙x=ranzab+˙c+˙z-˙b+˙c
151 51 mptex zab+˙c+˙z-˙b+˙cV
152 151 rnex ranzab+˙c+˙z-˙b+˙cV
153 150 7 152 ovmpoa b+˙cXaPpSylGb+˙c˙a=ranzab+˙c+˙z-˙b+˙c
154 100 80 153 syl2anc φaPpSylGbXcXb+˙c˙a=ranzab+˙c+˙z-˙b+˙c
155 127 144 154 3eqtr4rd φaPpSylGbXcXb+˙c˙a=b˙c˙a
156 155 ralrimivva φaPpSylGbXcXb+˙c˙a=b˙c˙a
157 74 156 jca φaPpSylG0G˙a=abXcXb+˙c˙a=b˙c˙a
158 157 ralrimiva φaPpSylG0G˙a=abXcXb+˙c˙a=b˙c˙a
159 39 158 jca φ˙:X×PpSylGPpSylGaPpSylG0G˙a=abXcXb+˙c˙a=b˙c˙a
160 1 5 41 isga ˙GGrpActPpSylGGGrpPpSylGV˙:X×PpSylGPpSylGaPpSylG0G˙a=abXcXb+˙c˙a=b˙c˙a
161 9 159 160 sylanbrc φ˙GGrpActPpSylG