Metamath Proof Explorer


Theorem sylow3lem1

Description: Lemma for sylow3 , first part. (Contributed by Mario Carneiro, 19-Jan-2015)

Ref Expression
Hypotheses sylow3.x X = Base G
sylow3.g φ G Grp
sylow3.xf φ X Fin
sylow3.p φ P
sylow3lem1.a + ˙ = + G
sylow3lem1.d - ˙ = - G
sylow3lem1.m ˙ = x X , y P pSyl G ran z y x + ˙ z - ˙ x
Assertion sylow3lem1 φ ˙ G GrpAct P pSyl G

Proof

Step Hyp Ref Expression
1 sylow3.x X = Base G
2 sylow3.g φ G Grp
3 sylow3.xf φ X Fin
4 sylow3.p φ P
5 sylow3lem1.a + ˙ = + G
6 sylow3lem1.d - ˙ = - G
7 sylow3lem1.m ˙ = x X , y P pSyl G ran z y x + ˙ z - ˙ x
8 ovex P pSyl G V
9 2 8 jctir φ G Grp P pSyl G V
10 1 fislw G Grp X Fin P y P pSyl G y SubGrp G y = P P pCnt X
11 2 3 4 10 syl3anc φ y P pSyl G y SubGrp G y = P P pCnt X
12 11 biimpa φ y P pSyl G y SubGrp G y = P P pCnt X
13 12 adantrl φ x X y P pSyl G y SubGrp G y = P P pCnt X
14 13 simpld φ x X y P pSyl G y SubGrp G
15 simprl φ x X y P pSyl G x X
16 eqid z y x + ˙ z - ˙ x = z y x + ˙ z - ˙ x
17 1 5 6 16 conjsubg y SubGrp G x X ran z y x + ˙ z - ˙ x SubGrp G
18 14 15 17 syl2anc φ x X y P pSyl G ran z y x + ˙ z - ˙ x SubGrp G
19 1 5 6 16 conjsubgen y SubGrp G x X y ran z y x + ˙ z - ˙ x
20 14 15 19 syl2anc φ x X y P pSyl G y ran z y x + ˙ z - ˙ x
21 3 adantr φ x X y P pSyl G X Fin
22 1 subgss y SubGrp G y X
23 14 22 syl φ x X y P pSyl G y X
24 21 23 ssfid φ x X y P pSyl G y Fin
25 1 subgss ran z y x + ˙ z - ˙ x SubGrp G ran z y x + ˙ z - ˙ x X
26 18 25 syl φ x X y P pSyl G ran z y x + ˙ z - ˙ x X
27 21 26 ssfid φ x X y P pSyl G ran z y x + ˙ z - ˙ x Fin
28 hashen y Fin ran z y x + ˙ z - ˙ x Fin y = ran z y x + ˙ z - ˙ x y ran z y x + ˙ z - ˙ x
29 24 27 28 syl2anc φ x X y P pSyl G y = ran z y x + ˙ z - ˙ x y ran z y x + ˙ z - ˙ x
30 20 29 mpbird φ x X y P pSyl G y = ran z y x + ˙ z - ˙ x
31 13 simprd φ x X y P pSyl G y = P P pCnt X
32 30 31 eqtr3d φ x X y P pSyl G ran z y x + ˙ z - ˙ x = P P pCnt X
33 1 fislw G Grp X Fin P ran z y x + ˙ z - ˙ x P pSyl G ran z y x + ˙ z - ˙ x SubGrp G ran z y x + ˙ z - ˙ x = P P pCnt X
34 2 3 4 33 syl3anc φ ran z y x + ˙ z - ˙ x P pSyl G ran z y x + ˙ z - ˙ x SubGrp G ran z y x + ˙ z - ˙ x = P P pCnt X
35 34 adantr φ x X y P pSyl G ran z y x + ˙ z - ˙ x P pSyl G ran z y x + ˙ z - ˙ x SubGrp G ran z y x + ˙ z - ˙ x = P P pCnt X
36 18 32 35 mpbir2and φ x X y P pSyl G ran z y x + ˙ z - ˙ x P pSyl G
37 36 ralrimivva φ x X y P pSyl G ran z y x + ˙ z - ˙ x P pSyl G
38 7 fmpo x X y P pSyl G ran z y x + ˙ z - ˙ x P pSyl G ˙ : X × P pSyl G P pSyl G
39 37 38 sylib φ ˙ : X × P pSyl G P pSyl G
40 2 adantr φ a P pSyl G G Grp
41 eqid 0 G = 0 G
42 1 41 grpidcl G Grp 0 G X
43 40 42 syl φ a P pSyl G 0 G X
44 simpr φ a P pSyl G a P pSyl G
45 simpr x = 0 G y = a y = a
46 simpl x = 0 G y = a x = 0 G
47 46 oveq1d x = 0 G y = a x + ˙ z = 0 G + ˙ z
48 47 46 oveq12d x = 0 G y = a x + ˙ z - ˙ x = 0 G + ˙ z - ˙ 0 G
49 45 48 mpteq12dv x = 0 G y = a z y x + ˙ z - ˙ x = z a 0 G + ˙ z - ˙ 0 G
50 49 rneqd x = 0 G y = a ran z y x + ˙ z - ˙ x = ran z a 0 G + ˙ z - ˙ 0 G
51 vex a V
52 51 mptex z a 0 G + ˙ z - ˙ 0 G V
53 52 rnex ran z a 0 G + ˙ z - ˙ 0 G V
54 50 7 53 ovmpoa 0 G X a P pSyl G 0 G ˙ a = ran z a 0 G + ˙ z - ˙ 0 G
55 43 44 54 syl2anc φ a P pSyl G 0 G ˙ a = ran z a 0 G + ˙ z - ˙ 0 G
56 2 ad2antrr φ a P pSyl G z a G Grp
57 slwsubg a P pSyl G a SubGrp G
58 57 adantl φ a P pSyl G a SubGrp G
59 1 subgss a SubGrp G a X
60 58 59 syl φ a P pSyl G a X
61 60 sselda φ a P pSyl G z a z X
62 1 5 41 grplid G Grp z X 0 G + ˙ z = z
63 56 61 62 syl2anc φ a P pSyl G z a 0 G + ˙ z = z
64 63 oveq1d φ a P pSyl G z a 0 G + ˙ z - ˙ 0 G = z - ˙ 0 G
65 1 41 6 grpsubid1 G Grp z X z - ˙ 0 G = z
66 56 61 65 syl2anc φ a P pSyl G z a z - ˙ 0 G = z
67 64 66 eqtrd φ a P pSyl G z a 0 G + ˙ z - ˙ 0 G = z
68 67 mpteq2dva φ a P pSyl G z a 0 G + ˙ z - ˙ 0 G = z a z
69 mptresid I a = z a z
70 68 69 syl6eqr φ a P pSyl G z a 0 G + ˙ z - ˙ 0 G = I a
71 70 rneqd φ a P pSyl G ran z a 0 G + ˙ z - ˙ 0 G = ran I a
72 rnresi ran I a = a
73 71 72 syl6eq φ a P pSyl G ran z a 0 G + ˙ z - ˙ 0 G = a
74 55 73 eqtrd φ a P pSyl G 0 G ˙ a = a
75 ovex c + ˙ z - ˙ c V
76 oveq2 w = c + ˙ z - ˙ c b + ˙ w = b + ˙ c + ˙ z - ˙ c
77 76 oveq1d w = c + ˙ z - ˙ c b + ˙ w - ˙ b = b + ˙ c + ˙ z - ˙ c - ˙ b
78 75 77 abrexco u | w v | z a v = c + ˙ z - ˙ c u = b + ˙ w - ˙ b = u | z a u = b + ˙ c + ˙ z - ˙ c - ˙ b
79 simprr φ a P pSyl G b X c X c X
80 simplr φ a P pSyl G b X c X a P pSyl G
81 simpr x = c y = a y = a
82 simpl x = c y = a x = c
83 82 oveq1d x = c y = a x + ˙ z = c + ˙ z
84 83 82 oveq12d x = c y = a x + ˙ z - ˙ x = c + ˙ z - ˙ c
85 81 84 mpteq12dv x = c y = a z y x + ˙ z - ˙ x = z a c + ˙ z - ˙ c
86 85 rneqd x = c y = a ran z y x + ˙ z - ˙ x = ran z a c + ˙ z - ˙ c
87 51 mptex z a c + ˙ z - ˙ c V
88 87 rnex ran z a c + ˙ z - ˙ c V
89 86 7 88 ovmpoa c X a P pSyl G c ˙ a = ran z a c + ˙ z - ˙ c
90 79 80 89 syl2anc φ a P pSyl G b X c X c ˙ a = ran z a c + ˙ z - ˙ c
91 eqid z a c + ˙ z - ˙ c = z a c + ˙ z - ˙ c
92 91 rnmpt ran z a c + ˙ z - ˙ c = v | z a v = c + ˙ z - ˙ c
93 90 92 syl6eq φ a P pSyl G b X c X c ˙ a = v | z a v = c + ˙ z - ˙ c
94 93 rexeqdv φ a P pSyl G b X c X w c ˙ a u = b + ˙ w - ˙ b w v | z a v = c + ˙ z - ˙ c u = b + ˙ w - ˙ b
95 94 abbidv φ a P pSyl G b X c X u | w c ˙ a u = b + ˙ w - ˙ b = u | w v | z a v = c + ˙ z - ˙ c u = b + ˙ w - ˙ b
96 40 adantr φ a P pSyl G b X c X G Grp
97 96 adantr φ a P pSyl G b X c X z a G Grp
98 simprl φ a P pSyl G b X c X b X
99 1 5 grpcl G Grp b X c X b + ˙ c X
100 96 98 79 99 syl3anc φ a P pSyl G b X c X b + ˙ c X
101 100 adantr φ a P pSyl G b X c X z a b + ˙ c X
102 61 adantlr φ a P pSyl G b X c X z a z X
103 1 5 grpcl G Grp b + ˙ c X z X b + ˙ c + ˙ z X
104 97 101 102 103 syl3anc φ a P pSyl G b X c X z a b + ˙ c + ˙ z X
105 79 adantr φ a P pSyl G b X c X z a c X
106 98 adantr φ a P pSyl G b X c X z a b X
107 1 5 6 grpsubsub4 G Grp b + ˙ c + ˙ z X c X b X b + ˙ c + ˙ z - ˙ c - ˙ b = b + ˙ c + ˙ z - ˙ b + ˙ c
108 97 104 105 106 107 syl13anc φ a P pSyl G b X c X z a b + ˙ c + ˙ z - ˙ c - ˙ b = b + ˙ c + ˙ z - ˙ b + ˙ c
109 1 5 grpass G Grp b X c X z X b + ˙ c + ˙ z = b + ˙ c + ˙ z
110 97 106 105 102 109 syl13anc φ a P pSyl G b X c X z a b + ˙ c + ˙ z = b + ˙ c + ˙ z
111 110 oveq1d φ a P pSyl G b X c X z a b + ˙ c + ˙ z - ˙ c = b + ˙ c + ˙ z - ˙ c
112 1 5 grpcl G Grp c X z X c + ˙ z X
113 97 105 102 112 syl3anc φ a P pSyl G b X c X z a c + ˙ z X
114 1 5 6 grpaddsubass G Grp b X c + ˙ z X c X b + ˙ c + ˙ z - ˙ c = b + ˙ c + ˙ z - ˙ c
115 97 106 113 105 114 syl13anc φ a P pSyl G b X c X z a b + ˙ c + ˙ z - ˙ c = b + ˙ c + ˙ z - ˙ c
116 111 115 eqtrd φ a P pSyl G b X c X z a b + ˙ c + ˙ z - ˙ c = b + ˙ c + ˙ z - ˙ c
117 116 oveq1d φ a P pSyl G b X c X z a b + ˙ c + ˙ z - ˙ c - ˙ b = b + ˙ c + ˙ z - ˙ c - ˙ b
118 108 117 eqtr3d φ a P pSyl G b X c X z a b + ˙ c + ˙ z - ˙ b + ˙ c = b + ˙ c + ˙ z - ˙ c - ˙ b
119 118 eqeq2d φ a P pSyl G b X c X z a u = b + ˙ c + ˙ z - ˙ b + ˙ c u = b + ˙ c + ˙ z - ˙ c - ˙ b
120 119 rexbidva φ a P pSyl G b X c X z a u = b + ˙ c + ˙ z - ˙ b + ˙ c z a u = b + ˙ c + ˙ z - ˙ c - ˙ b
121 120 abbidv φ a P pSyl G b X c X u | z a u = b + ˙ c + ˙ z - ˙ b + ˙ c = u | z a u = b + ˙ c + ˙ z - ˙ c - ˙ b
122 78 95 121 3eqtr4a φ a P pSyl G b X c X u | w c ˙ a u = b + ˙ w - ˙ b = u | z a u = b + ˙ c + ˙ z - ˙ b + ˙ c
123 eqid w c ˙ a b + ˙ w - ˙ b = w c ˙ a b + ˙ w - ˙ b
124 123 rnmpt ran w c ˙ a b + ˙ w - ˙ b = u | w c ˙ a u = b + ˙ w - ˙ b
125 eqid z a b + ˙ c + ˙ z - ˙ b + ˙ c = z a b + ˙ c + ˙ z - ˙ b + ˙ c
126 125 rnmpt ran z a b + ˙ c + ˙ z - ˙ b + ˙ c = u | z a u = b + ˙ c + ˙ z - ˙ b + ˙ c
127 122 124 126 3eqtr4g φ a P pSyl G b X c X ran w c ˙ a b + ˙ w - ˙ b = ran z a b + ˙ c + ˙ z - ˙ b + ˙ c
128 39 ad2antrr φ a P pSyl G b X c X ˙ : X × P pSyl G P pSyl G
129 128 79 80 fovrnd φ a P pSyl G b X c X c ˙ a P pSyl G
130 simpr x = b y = c ˙ a y = c ˙ a
131 simpl x = b y = c ˙ a x = b
132 131 oveq1d x = b y = c ˙ a x + ˙ z = b + ˙ z
133 132 131 oveq12d x = b y = c ˙ a x + ˙ z - ˙ x = b + ˙ z - ˙ b
134 130 133 mpteq12dv x = b y = c ˙ a z y x + ˙ z - ˙ x = z c ˙ a b + ˙ z - ˙ b
135 oveq2 z = w b + ˙ z = b + ˙ w
136 135 oveq1d z = w b + ˙ z - ˙ b = b + ˙ w - ˙ b
137 136 cbvmptv z c ˙ a b + ˙ z - ˙ b = w c ˙ a b + ˙ w - ˙ b
138 134 137 syl6eq x = b y = c ˙ a z y x + ˙ z - ˙ x = w c ˙ a b + ˙ w - ˙ b
139 138 rneqd x = b y = c ˙ a ran z y x + ˙ z - ˙ x = ran w c ˙ a b + ˙ w - ˙ b
140 ovex c ˙ a V
141 140 mptex w c ˙ a b + ˙ w - ˙ b V
142 141 rnex ran w c ˙ a b + ˙ w - ˙ b V
143 139 7 142 ovmpoa b X c ˙ a P pSyl G b ˙ c ˙ a = ran w c ˙ a b + ˙ w - ˙ b
144 98 129 143 syl2anc φ a P pSyl G b X c X b ˙ c ˙ a = ran w c ˙ a b + ˙ w - ˙ b
145 simpr x = b + ˙ c y = a y = a
146 simpl x = b + ˙ c y = a x = b + ˙ c
147 146 oveq1d x = b + ˙ c y = a x + ˙ z = b + ˙ c + ˙ z
148 147 146 oveq12d x = b + ˙ c y = a x + ˙ z - ˙ x = b + ˙ c + ˙ z - ˙ b + ˙ c
149 145 148 mpteq12dv x = b + ˙ c y = a z y x + ˙ z - ˙ x = z a b + ˙ c + ˙ z - ˙ b + ˙ c
150 149 rneqd x = b + ˙ c y = a ran z y x + ˙ z - ˙ x = ran z a b + ˙ c + ˙ z - ˙ b + ˙ c
151 51 mptex z a b + ˙ c + ˙ z - ˙ b + ˙ c V
152 151 rnex ran z a b + ˙ c + ˙ z - ˙ b + ˙ c V
153 150 7 152 ovmpoa b + ˙ c X a P pSyl G b + ˙ c ˙ a = ran z a b + ˙ c + ˙ z - ˙ b + ˙ c
154 100 80 153 syl2anc φ a P pSyl G b X c X b + ˙ c ˙ a = ran z a b + ˙ c + ˙ z - ˙ b + ˙ c
155 127 144 154 3eqtr4rd φ a P pSyl G b X c X b + ˙ c ˙ a = b ˙ c ˙ a
156 155 ralrimivva φ a P pSyl G b X c X b + ˙ c ˙ a = b ˙ c ˙ a
157 74 156 jca φ a P pSyl G 0 G ˙ a = a b X c X b + ˙ c ˙ a = b ˙ c ˙ a
158 157 ralrimiva φ a P pSyl G 0 G ˙ a = a b X c X b + ˙ c ˙ a = b ˙ c ˙ a
159 39 158 jca φ ˙ : X × P pSyl G P pSyl G a P pSyl G 0 G ˙ a = a b X c X b + ˙ c ˙ a = b ˙ c ˙ a
160 1 5 41 isga ˙ G GrpAct P pSyl G G Grp P pSyl G V ˙ : X × P pSyl G P pSyl G a P pSyl G 0 G ˙ a = a b X c X b + ˙ c ˙ a = b ˙ c ˙ a
161 9 159 160 sylanbrc φ ˙ G GrpAct P pSyl G