Metamath Proof Explorer


Theorem vdwlem9

Description: Lemma for vdw . (Contributed by Mario Carneiro, 12-Sep-2014)

Ref Expression
Hypotheses vdw.r φ R Fin
vdwlem9.k φ K 2
vdwlem9.s φ s Fin n f s 1 n K MonoAP f
vdwlem9.m φ M
vdwlem9.w φ W
vdwlem9.g φ g R 1 W M K PolyAP g K + 1 MonoAP g
vdwlem9.v φ V
vdwlem9.a φ f R 1 W 1 V K MonoAP f
vdwlem9.h φ H : 1 W 2 V R
vdwlem9.f F = x 1 V y 1 W H y + W x - 1 + V
Assertion vdwlem9 φ M + 1 K PolyAP H K + 1 MonoAP H

Proof

Step Hyp Ref Expression
1 vdw.r φ R Fin
2 vdwlem9.k φ K 2
3 vdwlem9.s φ s Fin n f s 1 n K MonoAP f
4 vdwlem9.m φ M
5 vdwlem9.w φ W
6 vdwlem9.g φ g R 1 W M K PolyAP g K + 1 MonoAP g
7 vdwlem9.v φ V
8 vdwlem9.a φ f R 1 W 1 V K MonoAP f
9 vdwlem9.h φ H : 1 W 2 V R
10 vdwlem9.f F = x 1 V y 1 W H y + W x - 1 + V
11 breq2 f = F K MonoAP f K MonoAP F
12 7 5 1 9 10 vdwlem4 φ F : 1 V R 1 W
13 ovex R 1 W V
14 ovex 1 V V
15 13 14 elmap F R 1 W 1 V F : 1 V R 1 W
16 12 15 sylibr φ F R 1 W 1 V
17 11 8 16 rspcdva φ K MonoAP F
18 eluz2nn K 2 K
19 2 18 syl φ K
20 19 nnnn0d φ K 0
21 14 20 12 vdwmc φ K MonoAP F g a d a AP K d F -1 g
22 6 adantr φ a d a AP K d F -1 g g R 1 W M K PolyAP g K + 1 MonoAP g
23 simprr φ a d a AP K d F -1 g a AP K d F -1 g
24 19 adantr φ a d a AP K d F -1 g K
25 simprll φ a d a AP K d F -1 g a
26 simprlr φ a d a AP K d F -1 g d
27 vdwapid1 K a d a a AP K d
28 24 25 26 27 syl3anc φ a d a AP K d F -1 g a a AP K d
29 23 28 sseldd φ a d a AP K d F -1 g a F -1 g
30 12 ffnd φ F Fn 1 V
31 30 adantr φ a d a AP K d F -1 g F Fn 1 V
32 fniniseg F Fn 1 V a F -1 g a 1 V F a = g
33 31 32 syl φ a d a AP K d F -1 g a F -1 g a 1 V F a = g
34 29 33 mpbid φ a d a AP K d F -1 g a 1 V F a = g
35 34 simprd φ a d a AP K d F -1 g F a = g
36 12 adantr φ a d a AP K d F -1 g F : 1 V R 1 W
37 34 simpld φ a d a AP K d F -1 g a 1 V
38 36 37 ffvelrnd φ a d a AP K d F -1 g F a R 1 W
39 35 38 eqeltrrd φ a d a AP K d F -1 g g R 1 W
40 rsp g R 1 W M K PolyAP g K + 1 MonoAP g g R 1 W M K PolyAP g K + 1 MonoAP g
41 22 39 40 sylc φ a d a AP K d F -1 g M K PolyAP g K + 1 MonoAP g
42 7 adantr φ a d a AP K d F -1 g V
43 5 adantr φ a d a AP K d F -1 g W
44 1 adantr φ a d a AP K d F -1 g R Fin
45 9 adantr φ a d a AP K d F -1 g H : 1 W 2 V R
46 4 adantr φ a d a AP K d F -1 g M
47 ovex 1 W V
48 elmapg R Fin 1 W V g R 1 W g : 1 W R
49 44 47 48 sylancl φ a d a AP K d F -1 g g R 1 W g : 1 W R
50 39 49 mpbid φ a d a AP K d F -1 g g : 1 W R
51 2 adantr φ a d a AP K d F -1 g K 2
52 42 43 44 45 10 46 50 51 25 26 23 vdwlem7 φ a d a AP K d F -1 g M K PolyAP g M + 1 K PolyAP H K + 1 MonoAP g
53 olc K + 1 MonoAP g M + 1 K PolyAP H K + 1 MonoAP g
54 53 a1i φ a d a AP K d F -1 g K + 1 MonoAP g M + 1 K PolyAP H K + 1 MonoAP g
55 52 54 jaod φ a d a AP K d F -1 g M K PolyAP g K + 1 MonoAP g M + 1 K PolyAP H K + 1 MonoAP g
56 oveq1 x = a x 1 = a 1
57 56 oveq1d x = a x - 1 + V = a - 1 + V
58 57 oveq2d x = a W x - 1 + V = W a - 1 + V
59 58 oveq2d x = a y + W x - 1 + V = y + W a - 1 + V
60 59 fveq2d x = a H y + W x - 1 + V = H y + W a - 1 + V
61 60 mpteq2dv x = a y 1 W H y + W x - 1 + V = y 1 W H y + W a - 1 + V
62 47 mptex y 1 W H y + W a - 1 + V V
63 61 10 62 fvmpt a 1 V F a = y 1 W H y + W a - 1 + V
64 37 63 syl φ a d a AP K d F -1 g F a = y 1 W H y + W a - 1 + V
65 64 35 eqtr3d φ a d a AP K d F -1 g y 1 W H y + W a - 1 + V = g
66 65 breq2d φ a d a AP K d F -1 g K + 1 MonoAP y 1 W H y + W a - 1 + V K + 1 MonoAP g
67 20 adantr φ a d a AP K d F -1 g K 0
68 peano2nn0 K 0 K + 1 0
69 67 68 syl φ a d a AP K d F -1 g K + 1 0
70 nnm1nn0 a a 1 0
71 25 70 syl φ a d a AP K d F -1 g a 1 0
72 nn0nnaddcl a 1 0 V a - 1 + V
73 71 42 72 syl2anc φ a d a AP K d F -1 g a - 1 + V
74 43 73 nnmulcld φ a d a AP K d F -1 g W a - 1 + V
75 25 42 nnaddcld φ a d a AP K d F -1 g a + V
76 43 75 nnmulcld φ a d a AP K d F -1 g W a + V
77 76 nnzd φ a d a AP K d F -1 g W a + V
78 2nn 2
79 nnmulcl 2 V 2 V
80 78 7 79 sylancr φ 2 V
81 5 80 nnmulcld φ W 2 V
82 81 nnzd φ W 2 V
83 82 adantr φ a d a AP K d F -1 g W 2 V
84 25 nnred φ a d a AP K d F -1 g a
85 42 nnred φ a d a AP K d F -1 g V
86 elfzle2 a 1 V a V
87 37 86 syl φ a d a AP K d F -1 g a V
88 84 85 85 87 leadd1dd φ a d a AP K d F -1 g a + V V + V
89 42 nncnd φ a d a AP K d F -1 g V
90 89 2timesd φ a d a AP K d F -1 g 2 V = V + V
91 88 90 breqtrrd φ a d a AP K d F -1 g a + V 2 V
92 75 nnred φ a d a AP K d F -1 g a + V
93 80 nnred φ 2 V
94 93 adantr φ a d a AP K d F -1 g 2 V
95 43 nnred φ a d a AP K d F -1 g W
96 43 nngt0d φ a d a AP K d F -1 g 0 < W
97 lemul2 a + V 2 V W 0 < W a + V 2 V W a + V W 2 V
98 92 94 95 96 97 syl112anc φ a d a AP K d F -1 g a + V 2 V W a + V W 2 V
99 91 98 mpbid φ a d a AP K d F -1 g W a + V W 2 V
100 eluz2 W 2 V W a + V W a + V W 2 V W a + V W 2 V
101 77 83 99 100 syl3anbrc φ a d a AP K d F -1 g W 2 V W a + V
102 43 nncnd φ a d a AP K d F -1 g W
103 1cnd φ a d a AP K d F -1 g 1
104 71 nn0cnd φ a d a AP K d F -1 g a 1
105 104 89 addcld φ a d a AP K d F -1 g a - 1 + V
106 102 103 105 adddid φ a d a AP K d F -1 g W 1 + a 1 + V = W 1 + W a - 1 + V
107 103 104 89 addassd φ a d a AP K d F -1 g 1 + a 1 + V = 1 + a 1 + V
108 ax-1cn 1
109 25 nncnd φ a d a AP K d F -1 g a
110 pncan3 1 a 1 + a - 1 = a
111 108 109 110 sylancr φ a d a AP K d F -1 g 1 + a - 1 = a
112 111 oveq1d φ a d a AP K d F -1 g 1 + a 1 + V = a + V
113 107 112 eqtr3d φ a d a AP K d F -1 g 1 + a 1 + V = a + V
114 113 oveq2d φ a d a AP K d F -1 g W 1 + a 1 + V = W a + V
115 102 mulid1d φ a d a AP K d F -1 g W 1 = W
116 115 oveq1d φ a d a AP K d F -1 g W 1 + W a - 1 + V = W + W a - 1 + V
117 106 114 116 3eqtr3d φ a d a AP K d F -1 g W a + V = W + W a - 1 + V
118 117 fveq2d φ a d a AP K d F -1 g W a + V = W + W a - 1 + V
119 101 118 eleqtrd φ a d a AP K d F -1 g W 2 V W + W a - 1 + V
120 fvoveq1 y = z H y + W a - 1 + V = H z + W a - 1 + V
121 120 cbvmptv y 1 W H y + W a - 1 + V = z 1 W H z + W a - 1 + V
122 44 69 43 74 45 119 121 vdwlem2 φ a d a AP K d F -1 g K + 1 MonoAP y 1 W H y + W a - 1 + V K + 1 MonoAP H
123 66 122 sylbird φ a d a AP K d F -1 g K + 1 MonoAP g K + 1 MonoAP H
124 123 orim2d φ a d a AP K d F -1 g M + 1 K PolyAP H K + 1 MonoAP g M + 1 K PolyAP H K + 1 MonoAP H
125 55 124 syld φ a d a AP K d F -1 g M K PolyAP g K + 1 MonoAP g M + 1 K PolyAP H K + 1 MonoAP H
126 41 125 mpd φ a d a AP K d F -1 g M + 1 K PolyAP H K + 1 MonoAP H
127 126 expr φ a d a AP K d F -1 g M + 1 K PolyAP H K + 1 MonoAP H
128 127 rexlimdvva φ a d a AP K d F -1 g M + 1 K PolyAP H K + 1 MonoAP H
129 128 exlimdv φ g a d a AP K d F -1 g M + 1 K PolyAP H K + 1 MonoAP H
130 21 129 sylbid φ K MonoAP F M + 1 K PolyAP H K + 1 MonoAP H
131 17 130 mpd φ M + 1 K PolyAP H K + 1 MonoAP H