Metamath Proof Explorer


Theorem vdwlem9

Description: Lemma for vdw . (Contributed by Mario Carneiro, 12-Sep-2014)

Ref Expression
Hypotheses vdw.r φRFin
vdwlem9.k φK2
vdwlem9.s φsFinnfs1nKMonoAPf
vdwlem9.m φM
vdwlem9.w φW
vdwlem9.g φgR1WMKPolyAPgK+1MonoAPg
vdwlem9.v φV
vdwlem9.a φfR1W1VKMonoAPf
vdwlem9.h φH:1W2VR
vdwlem9.f F=x1Vy1WHy+Wx-1+V
Assertion vdwlem9 φM+1KPolyAPHK+1MonoAPH

Proof

Step Hyp Ref Expression
1 vdw.r φRFin
2 vdwlem9.k φK2
3 vdwlem9.s φsFinnfs1nKMonoAPf
4 vdwlem9.m φM
5 vdwlem9.w φW
6 vdwlem9.g φgR1WMKPolyAPgK+1MonoAPg
7 vdwlem9.v φV
8 vdwlem9.a φfR1W1VKMonoAPf
9 vdwlem9.h φH:1W2VR
10 vdwlem9.f F=x1Vy1WHy+Wx-1+V
11 breq2 f=FKMonoAPfKMonoAPF
12 7 5 1 9 10 vdwlem4 φF:1VR1W
13 ovex R1WV
14 ovex 1VV
15 13 14 elmap FR1W1VF:1VR1W
16 12 15 sylibr φFR1W1V
17 11 8 16 rspcdva φKMonoAPF
18 eluz2nn K2K
19 2 18 syl φK
20 19 nnnn0d φK0
21 14 20 12 vdwmc φKMonoAPFgadaAPKdF-1g
22 6 adantr φadaAPKdF-1ggR1WMKPolyAPgK+1MonoAPg
23 simprr φadaAPKdF-1gaAPKdF-1g
24 19 adantr φadaAPKdF-1gK
25 simprll φadaAPKdF-1ga
26 simprlr φadaAPKdF-1gd
27 vdwapid1 KadaaAPKd
28 24 25 26 27 syl3anc φadaAPKdF-1gaaAPKd
29 23 28 sseldd φadaAPKdF-1gaF-1g
30 12 ffnd φFFn1V
31 30 adantr φadaAPKdF-1gFFn1V
32 fniniseg FFn1VaF-1ga1VFa=g
33 31 32 syl φadaAPKdF-1gaF-1ga1VFa=g
34 29 33 mpbid φadaAPKdF-1ga1VFa=g
35 34 simprd φadaAPKdF-1gFa=g
36 12 adantr φadaAPKdF-1gF:1VR1W
37 34 simpld φadaAPKdF-1ga1V
38 36 37 ffvelcdmd φadaAPKdF-1gFaR1W
39 35 38 eqeltrrd φadaAPKdF-1ggR1W
40 rsp gR1WMKPolyAPgK+1MonoAPggR1WMKPolyAPgK+1MonoAPg
41 22 39 40 sylc φadaAPKdF-1gMKPolyAPgK+1MonoAPg
42 7 adantr φadaAPKdF-1gV
43 5 adantr φadaAPKdF-1gW
44 1 adantr φadaAPKdF-1gRFin
45 9 adantr φadaAPKdF-1gH:1W2VR
46 4 adantr φadaAPKdF-1gM
47 ovex 1WV
48 elmapg RFin1WVgR1Wg:1WR
49 44 47 48 sylancl φadaAPKdF-1ggR1Wg:1WR
50 39 49 mpbid φadaAPKdF-1gg:1WR
51 2 adantr φadaAPKdF-1gK2
52 42 43 44 45 10 46 50 51 25 26 23 vdwlem7 φadaAPKdF-1gMKPolyAPgM+1KPolyAPHK+1MonoAPg
53 olc K+1MonoAPgM+1KPolyAPHK+1MonoAPg
54 53 a1i φadaAPKdF-1gK+1MonoAPgM+1KPolyAPHK+1MonoAPg
55 52 54 jaod φadaAPKdF-1gMKPolyAPgK+1MonoAPgM+1KPolyAPHK+1MonoAPg
56 oveq1 x=ax1=a1
57 56 oveq1d x=ax-1+V=a-1+V
58 57 oveq2d x=aWx-1+V=Wa-1+V
59 58 oveq2d x=ay+Wx-1+V=y+Wa-1+V
60 59 fveq2d x=aHy+Wx-1+V=Hy+Wa-1+V
61 60 mpteq2dv x=ay1WHy+Wx-1+V=y1WHy+Wa-1+V
62 47 mptex y1WHy+Wa-1+VV
63 61 10 62 fvmpt a1VFa=y1WHy+Wa-1+V
64 37 63 syl φadaAPKdF-1gFa=y1WHy+Wa-1+V
65 64 35 eqtr3d φadaAPKdF-1gy1WHy+Wa-1+V=g
66 65 breq2d φadaAPKdF-1gK+1MonoAPy1WHy+Wa-1+VK+1MonoAPg
67 20 adantr φadaAPKdF-1gK0
68 peano2nn0 K0K+10
69 67 68 syl φadaAPKdF-1gK+10
70 nnm1nn0 aa10
71 25 70 syl φadaAPKdF-1ga10
72 nn0nnaddcl a10Va-1+V
73 71 42 72 syl2anc φadaAPKdF-1ga-1+V
74 43 73 nnmulcld φadaAPKdF-1gWa-1+V
75 25 42 nnaddcld φadaAPKdF-1ga+V
76 43 75 nnmulcld φadaAPKdF-1gWa+V
77 76 nnzd φadaAPKdF-1gWa+V
78 2nn 2
79 nnmulcl 2V2V
80 78 7 79 sylancr φ2V
81 5 80 nnmulcld φW2V
82 81 nnzd φW2V
83 82 adantr φadaAPKdF-1gW2V
84 25 nnred φadaAPKdF-1ga
85 42 nnred φadaAPKdF-1gV
86 elfzle2 a1VaV
87 37 86 syl φadaAPKdF-1gaV
88 84 85 85 87 leadd1dd φadaAPKdF-1ga+VV+V
89 42 nncnd φadaAPKdF-1gV
90 89 2timesd φadaAPKdF-1g2V=V+V
91 88 90 breqtrrd φadaAPKdF-1ga+V2V
92 75 nnred φadaAPKdF-1ga+V
93 80 nnred φ2V
94 93 adantr φadaAPKdF-1g2V
95 43 nnred φadaAPKdF-1gW
96 43 nngt0d φadaAPKdF-1g0<W
97 lemul2 a+V2VW0<Wa+V2VWa+VW2V
98 92 94 95 96 97 syl112anc φadaAPKdF-1ga+V2VWa+VW2V
99 91 98 mpbid φadaAPKdF-1gWa+VW2V
100 eluz2 W2VWa+VWa+VW2VWa+VW2V
101 77 83 99 100 syl3anbrc φadaAPKdF-1gW2VWa+V
102 43 nncnd φadaAPKdF-1gW
103 1cnd φadaAPKdF-1g1
104 71 nn0cnd φadaAPKdF-1ga1
105 104 89 addcld φadaAPKdF-1ga-1+V
106 102 103 105 adddid φadaAPKdF-1gW1+a1+V=W1+Wa-1+V
107 103 104 89 addassd φadaAPKdF-1g1+a1+V=1+a1+V
108 ax-1cn 1
109 25 nncnd φadaAPKdF-1ga
110 pncan3 1a1+a-1=a
111 108 109 110 sylancr φadaAPKdF-1g1+a-1=a
112 111 oveq1d φadaAPKdF-1g1+a1+V=a+V
113 107 112 eqtr3d φadaAPKdF-1g1+a1+V=a+V
114 113 oveq2d φadaAPKdF-1gW1+a1+V=Wa+V
115 102 mulridd φadaAPKdF-1gW1=W
116 115 oveq1d φadaAPKdF-1gW1+Wa-1+V=W+Wa-1+V
117 106 114 116 3eqtr3d φadaAPKdF-1gWa+V=W+Wa-1+V
118 117 fveq2d φadaAPKdF-1gWa+V=W+Wa-1+V
119 101 118 eleqtrd φadaAPKdF-1gW2VW+Wa-1+V
120 fvoveq1 y=zHy+Wa-1+V=Hz+Wa-1+V
121 120 cbvmptv y1WHy+Wa-1+V=z1WHz+Wa-1+V
122 44 69 43 74 45 119 121 vdwlem2 φadaAPKdF-1gK+1MonoAPy1WHy+Wa-1+VK+1MonoAPH
123 66 122 sylbird φadaAPKdF-1gK+1MonoAPgK+1MonoAPH
124 123 orim2d φadaAPKdF-1gM+1KPolyAPHK+1MonoAPgM+1KPolyAPHK+1MonoAPH
125 55 124 syld φadaAPKdF-1gMKPolyAPgK+1MonoAPgM+1KPolyAPHK+1MonoAPH
126 41 125 mpd φadaAPKdF-1gM+1KPolyAPHK+1MonoAPH
127 126 expr φadaAPKdF-1gM+1KPolyAPHK+1MonoAPH
128 127 rexlimdvva φadaAPKdF-1gM+1KPolyAPHK+1MonoAPH
129 128 exlimdv φgadaAPKdF-1gM+1KPolyAPHK+1MonoAPH
130 21 129 sylbid φKMonoAPFM+1KPolyAPHK+1MonoAPH
131 17 130 mpd φM+1KPolyAPHK+1MonoAPH